Новосибирский государственный аграрный университет Инженерный институт

ЭКСПЛУАТАЦИЯ ЭЛЕКТРООБОРУДОВАНИЯ И СРЕДСТВ АВТОМАТИКИ

Методические указания для лабораторных работ

УДК 006.91.1:621.311.171(07) ББК 30.10, я7 М546

Кафедра техносферной безопасности и электротехнологий

Составители: Самохвалов М.В., ст. преподаватель. Болотов Д.С., инженер

Рецензент Добролюбов И.П., д-р техн. наук, проф., акад. МААНОИ

Эксплуатация электрооборудования и средств автоматики: метод. указания для лабораторных работ / Новосиб. ГАУ, Инженер. ин-т; сост. М.В. Самохвалов, Д.С. Болотов – Новосибирск, 2017. – 40 с.

Содержат теоретические материалы и порядок выполнения лабораторных работ, контрольные вопросы для самопроверки, а также список рекомендуемой литературы.

Предназначены для бакалавров очной и заочной форм обучения по направлению 35.03.06 — Агроинженерия (профиль — Электрооборудование и электротехнологии в агропромышленном комплексе).

Утверждены и рекомендованы к изданию учебно-методическим советом Инженерного института (протокол №5 от 12 декабря 2017 г.).

[©] Новосибирский государственный аграрный университет, 2017

[©] М.В. Самохвалов, Д.С. Болотов, 2017

Содержание:

ПРАВИЛА БЕЗОПАСНОСТИ

при работе студентов в лабораториях кафедры электрификации и автоматизации сельского хозяйства НГАУ

- 1. Перед началом лабораторных работ в лабораториях получите у руководителя работ инструктаж по технике безопасности. Изучите и запомните схему электроснабжения лаборатории, места установки коммутирующей и защитной аппаратуры. После получения инструктажа по технике безопасности распишитесь в журнале о том, что с правилами безопасной работы вы ознакомлены и обязуетесь их выполнять.
- 2. Не трогайте, не включайте и не выключайте без разрешения преподавателя или лаборанта автоматы и другие приборы. Ошибочное включение может быть причиной несчастного случая или выхода из строя электрооборудования.
- 3. Перед тем как приступить к выполнению работы, внимательно ознакомьтесь с заданием, оборудованием, материалами и инструментом, проверьте исправность ограждений и предохранительных устройств. О замеченных неисправностях сообщите преподавателю.
- 4. Перед сборкой схемы убедитесь, что автомат или пакетный выключатель, установленный на щите лабораторного стола, отключён.
- 5. Помните, что шарфы, косынки и другие подобные им детали одежды могут быть затянуты вращающимися частями машин и послужить причиной несчастного случая.
- 6. Не загромождайте рабочее место посторонними предметами.
- 7. Собранная схема проверяется всеми членами бригады, при этом особое внимание следует обратить на надёжность всех клеммных соединений и контактов.
- 8. По окончании работы приведите в порядок своё рабочее место. После уборки заявите об окончании работы преподавателю и только после его разрешения можете покинуть лабораторию.
- 9. Не производите излишнего шума в лабораториях.
- 10. Если с вами или другим студентом произошёл несчастный случай, немедленно сообщите об этом преподавателю или лаборанту для оказания помощи.

Воспрещается:

- Включать настенные групповые автоматы и рубильники распределительных шкафов без разрешения преподавателя.
- Включать собранную схему до проверки и разрешения преподавателя или лаборанта.
- Производить переключение в схемах, находящихся под напряжением.
- Оставлять без наблюдения схему, находящуюся под напряжением.
- Закорачивать или отключать блокировочные устройства.
- Заходить за стенд и протягивать руки за ограждения.

Лабораторная работа №1: Проверка тепловых реле

Цель работы. Ознакомиться с конструкцией и техническими данными предохранителей с плавкими вставками, тепловыми реле.

Задание. Снять опытным путем времятоковую характеристику плавкой вставки, теплового реле и сравнить ее с характеристикой, найденной расчетным путем. Заправить предохранитель ПР-2 новой плавкой вставкой.

Порядок выполнения работы

- 1.Снять ампер-временную характеристику токового реле, построить график на миллиметровой бумаге.
- 2. Экспериментально проверить время сгорания плавкой вставки, занести результаты в таблицу.

Методические указания

Работа выполняется группой учащихся из трех-четырех человек. Для снятия времятоковой характеристики служит специальный стенд.

В качестве плавкой вставки следует использовать медную проволоку диаметром 0,35 мм, длиной 70 мм, помещенную в фарфоровую группу. Снимают времятоковую характеристику в такой последовательности:

- закрепляют плавкую вставку на стенде;
- устанавливают автотрансформатор на 0 и включают рубильник Р и автомат А;
- поворотом рукоятки автотрансформатора по часовой стрелке устанавливают силу тока в цепи, равную 10 A, и по секундомеру определяют время сгорания плавкой вставки;
- аналогичные операции выполняют с новой плавкой вставкой, но с током другой силы;
 - показания записывают так, как показано в табл.1.

После того как будут заполнены все графы формы, приступают к расчету времени сгорания плавкой вставки и сравнению результатов расчета с данными эксперимента.

Таблица 1

Ток, А	Показатели электросекундомера, с				
	опытные	расчетные			
10					
15					
20					
30					
40					

Общие сведения

Предохранителем с плавкой вставкой (плавким предохранителем) называют устройство, которое при токе, большем заданной величины, размыкает электрическую цепь путем расплавления плавкой вставки, нагретой током, проходящим по ней до момента расплавления.

Пример зависимости времени сгорания плавкой вставки от кратности проходящего через предохранитель тока: чем больше кратность тока, т.е. чем больше проходящий ток, тем меньше время сгорания плавкой вставки.

Плавкие предохранители осуществляют защиту от токов коротких замыканий и от недопустимо длительных перегрузок.

В сельском хозяйстве наиболее распространены предохранители $\Pi P - 2$ и $\Pi H - 2$.

Устройство предохранителя ПР–2: внутрь фибровой трубки (патрон) помещена плавкая вставка, которая изготовлена из тонкого листового цинка. Узкие перешейки (от двух до четырех) предотвращают излишний нагрев вставки при нагрузках, близких к номинальной.

Предохранители ПР-2 выпускаются промышленностью на номинальное напряжение 220 В (короткий патрон), 500 В (длинный патрон), номинальные токи 15, 60, 100, 200, 350 до 1000 А, а плавкие вставки к ним — на номинальные токи 6, 10, 15, 20, 25, 35,45, 60, 80, 100, 125, 160, 200, 225, 260, 300 А.

При заказе предохранителя указывают напряжение, номинальный ток предохранителя и номинальный ток плавкой вставки: например, предохранитель ПР–2 на 220 В, 60 А, ток плавкой вставки 25 А. Заметим, что для напряжения 380 В годятся предохранители как напряжением 500 В, так и напряжением 250 В.

Устройство предохранителя ПН–2: плавкая вставка этого предохранителя изготовлена из нескольких полос медной фольги и помещена в патрон, заполненный кварцевым песком, который способствует ускоренному гашению электрической дуги, возникающей при перегорании плавкой вставки.

Предохранители ПН–2 выпускаются на номинальные токи 100, 250, 400, 600 и 1000 A, а плавкие вставки – на номинальные токи 30, 40, 50, 60, 80, 100, 120, 150, 200, 300 A и более.

Время плавления плавкой вставки, выполненной из медной проволоки, может быть приближенно подсчитано по следующей формуле:

$$t = \frac{S^2}{I} \cdot 10^5, \, c,$$

где S — поперечное сечение плавкой вставки, мм 2 ; I — ток, проходящий через плавкую вставку, A.

Приведенная выше формула пригодна лишь для приближенных

расчетов. На практике самодельные плавкие вставки могут применяться только в том случае, если они откалиброваны на специальном стенде, принципиальная электрическая схема которого приведена на рабочем месте. Помимо калибровки плавких предохранителей стенд позволяет производить сушку электрическим током одного или нескольких электродвигателей и силовых трансформаторов, может быть использован для производства электросварочных работ, для зарядки аккумуляторов, для настройки тепловых реле и целого ряда других работ.

Упражнения

- 1. Рассчитайте время сгорания плавкой вставки, выполненной из медной проволоки диаметром 0,5 мм, если по ней протекает ток: 100 A; 200 A; 500 A.
- 2. Оформите заказ на предохранители ПР–2, рассчитанные на номинальный ток плавкой вставки 125, 160 и 200 А.

Контрольные вопросы

- 1. Для каких целей служат плавкие предохранители?
- 2. Что называют времятоковой характеристикой плавкой вставки?
- 3. Что называют номинальным током предохранителя?
- 4. Что называют номинальным током плавкой вставки предохранителя?
 - 5. Для чего в пластинчатых вставках делают суженные места?
- 6. Для какой цели патрон предохранителя ПН–2 заполняют кварцевым песком?

Рекомендованная литература

- 1. Ганелин А.М., Коструба С.И., Шац Е.Л. Лабораторный практикум по электроприводу и применению электроэнергии в сельском хозяйстве. М.: Высш. шк., 1977.
- 2. Акимова Н.А., Котеленц Н.Ф., Сентюрихин Н.И. Монтаж, техническая эксплуатация и ремонт электрического и электромеханического оборудования. М.: Мастерство, 2001

Приложение

Расчет проводов, предохранителей, тепловых реле

В соответствии с величиной рабочего тока по каталогам и справочникам выбирают сечение провода и кабеля. Однако соблюдения только этого условия для силовых проводок недостаточно. В процессе эксплуатации могут иметь место случаи неправильного пользования электроэнергией или короткие замыкания, в результате чего может произойти непредвиденное увеличение тока в проводнике, он нагреет-

ся и выйдет из строя. Чтобы этого избежать, предусматривают защиту проводников плавкими предохранителями. Плавкая вставка предохранителя защищает установку только от токов короткого замыкания. В осветительной сети она является единственным защищающим элементом:

$$I_{BCT} \approx I_{HA\Gamma P}$$
.

При защите электродвигателей, кроме плавких вставок предохранителей (они защищают в основном от токов короткого замыкания на клеммах и в обмотках электродвигателей), необходимо обеспечивать и защиту их от перегрузок.

При использовании автоматических выключателей вместо плавких вставок предохранителей могут быть использованы электромагнитные расцепители.

Выбор проводников ведут по нагреву.

Обычно расчет электрической сети начинают с плавкой вставки. При этом руководствуются двумя правилами.

 Π равило I. Ток плавкой вставки должен быть равен или больше рабочего тока нагрузки:

$$I_{BCT} \ge I_P$$
.

Правило II. Ток плавкой вставки должен быть не меньше, чем деленная на 2,5 величина максимального тока для защищаемого участка проводки:

$$I_{BCT} \ge \frac{I_{MAKC}}{2.5}$$
,

где максимальный ток

$$I_{MAKC} = KI_{DB}$$
,

K – кратность пускового тока (дается в каталогах).

Если предохранитель защищает линию, к которой присоединяются несколько двигателей, то максимальный ток

$$I_{MAKC} = m(I_{IB} + I_{IB2} + ... + I_{IBn}) + I_{IIVCK},$$

где $I_{\rm пуск}$ — ток одного из двигателей, при котором $I_{\rm макс}$ имеет наибольшее значение; m — коэффициент одновременности.

Из данных, полученных по указанным выше правилам, выбирают наибольшее значение тока плавкой вставки. Затем по шкале стандартных величин токов плавкой вставки (табл. 2) находят ближайшую большую. Выбор вставки на меньший ближайший ток может привести к тому, что она перегорит при пуске двигателя.

Таблица 2 Стандартные величины токов плавкой вставки

Тип предохранителя	Номинальный ток, А			
	предохранителя	плавкой вставки		
НПН-15; ПР-1-15 НПН-60; ПР-1-60 НПР-100; ПР-1-100 НПР-200; ПР-1-200	15 60 100 200	6; 10; 15 15; 20; 25; 35; 45; 60 60; 80; 100 100; 125; 160; 200		

Если нет нагревательных элементов заводского изготовления, их можно изготовить на месте. Для этой цели используют трансформаторную сталь толщиной 0,35 или 0,5 мм. Перед изготовлением элементов трансформаторную сталь необходимо отжечь. Тогда она лучше обрабатывается и становится более устойчивой к коррозии. Заготовку и изгиб пластин делают по форме заводских нагревательных элементов. Ориентировочные значения ширины пластин нагревательных элементов в зависимости от номинальных токов приведены в табл. 3.

Таблица 3

Номинал нагревательного элемент	Ширина нагревательного	
0,5 мм	0,35 мм	элемента, мм
14	6	4
16	9	6
20	13	8
22	16	10
24	19	12
26	22	14
28	25	16

Следует иметь в виду, что выбор сечения провода зависит от того, будет ли он защищен плавкой вставкой только от коротких замыканий или также и от перегрузок. По правилам устройства электроустановок, от перегрузок нужно защищать осветительные сети в жилых и общественных зданиях, в торговых и служебно-бытовых помещениях промышленных предприятий, а также в пожароопасных помещениях. Сети любого назначения, выполненные незащищенными проводами с горючей оболочкой, должны быть защищены от перегрузок. Это относится и к сетям любого типа во взрывоопасных помещениях.

При защите сетей от перегрузок допустимый ток провода должен быть больше или равен

$$I_{\Pi O\Pi} \ge I'_{\Pi O\Pi} = 1,25I_{BCT}$$
.

Выше указано, что расчет проводов можно также вести по потере

напряжения в проводке. Любой проводник имеет сопротивление. При передаче по нему электроэнергии часть напряжения расходуется на преодоление этого сопротивления. Величина, равная разности напряжений в начале и конце линии, называется потерей напряжения:

$$\Delta U = U_1 - U_2$$
.

Эту же величину можно получить, зная величину тока нагрузки, длину проводки, ее сечение и удельную проводимость:

$$\Delta U = \frac{2Il}{jS},$$

т. е. потеря напряжения в проводке прямо пропорциональна силе протекающего тока I и длине проводки l и обратно пропорциональна сечению S и удельной проводимости j материала проводника.

Работа теплового реле основана на изгибании биметаллической пластинки под действием тепла, выделяемого в нагревательном элементе. Но эта же пластинка будет изгибаться и под действием тепла окружающего воздуха. Таким образом, например, в жаркие дни реле будет срабатывать быстрее, чем в холодные. Для устранения этого явления в реле некоторых типов применена температурная компенсация, сущность которой заключается в том, что изгибанию биметаллической пластинки от изменения температуры окружающего воздуха соответствует противоположное по направлению изгибание пластинки компенсатора. Пластинка компенсатора представляет собой тоже биметаллическую пластинку, но с обратным по отношению к основной биметаллической пластинке прогибом.

Промышленность выпускает сменные нагревательные элементы к тепловым реле различного типа. Так, например, к наиболее распространенным в сельском хозяйстве тепловым реле типа ТРН и ТРП выпускаются тепловые элементы, рассчитанные на номинальные токи, приведенные в табл. 4.

Таблица 4

Тип реле	Номинальные токи, А			
ТРН-8 и ТРН-10	0,5; 0,63; 0,8; 1,0;1,25; 1,6; 2,0; 2,5; 3,2; 4,0; 5,0; 6,3; 8,0; 10,0			
TPH-25	5,0; 6,3; 8,0; 10,0; 12,5; 16,0; 20,0; 25,0;			
TPH-40	12,5; 16,0; 20,0; 32,0; 40,0			
ТРП-60	25,0; 30,0; 40,0; 50,0; 60,0			
ТРП-150	50,0; 60,0; 80,0; 100,0; 120,0; 150,0			

Помимо реле указанного типа для защиты электропривода от пере-

грузок по току широко применяют тепловые реле типов TPA, TPB, PT, TPH и TPT.

Реле каждого типа имеют различные исполнения в зависимости от величин номинальных токов. Так, например, реле типа ТРА выпускаются 23 исполнений на номинальные токи от 7 до 215 А. Реле типа ТРВ выпускаются 20 исполнений на номинальные токи от 7 до 200 А и т. д. Цифры, стоящие в марке теплового реле после букв, означают наибольший номинальный ток сменного нагревателя, который может быть установлен в тепловое реле. Например, в тепловом реле ТРН-25 могут быть установлены сменные нагреватели на различные номинальные токи, но не более чем на 25 А.

Ток вставки теплового реле можно изменить, установив другой нагревательный элемент. В некоторых типах тепловых реле, например ТРН, предусмотрен регулятор тока вставки, позволяющий изменять ток вставки в небольших пределах. Так, в тепловых реле ТРН-8А и ТРН-10 ток вставки можно регулировать от 0,8 до 1,25 номинального значения тока теплового элемента, а в других реле (ТРН-25, ТРН-40) — в пределах 0,75–1,3 той же величины.

Лабораторная работа №2: Сушка изоляции электрооборудования

Цель работы. Ознакомиться с диагностикой и существующими способами сушки изоляции электрооборудования

Оборудование:

- 1. Шкаф сушильный
- 2. Термометр
- 3. Мегомметр

Порядок проведения работы (постановка задач исследования)

- 1. Подберите объекты для исследования трансформаторы, электродвигатели, катушки.
- 2. Измерьте сопротивление изоляции объекта исследования. Согласно ПУЭ, если сопротивление изоляции в холодном состоянии меньше 1 МОм, такую изоляцию надо сушить в течение часа и затем снова проверить ее с помощью мегомметра. При улучшении параметров изоляции процесс сушки продолжают, а при отрицательном результате электрооборудование бракуется и отправляется в ремонт.
- 3. При включении сушильного шкафа замерьте через 5-10 мин температуру нагрева воздуха в камере сушильного шкафа. Данные занесите в таблицу и постройте график на ПЭВМ. Отчет оформите первоначально в рабочей тетради с данными измерений, таблицами, графика-

ми, выводами и предложениями по улучшению процесса сушки. Например, стоит ли заменить тепловой блок с простыми ТЭНами на блок с воздушными ТЭНами с оребрениями и подключить его к трехфазной сети

- 4. Рассмотрите другие способы сушки изоляции токовый, конвективный, терморадиационный, комбинированный, их преимущества и недостатки. Какой из этих способов можно реализовать в лаборатории эксплуатации?
- 5. На отдельных листах выполните принципиальные электрические схемы электрооборудования сушильного шкафа с предложением по модернизации установки, схему замещения изоляции и графики по изменению сопротивления изоляции, температурные кривые.
- 6. На основе отчета предложите описание лабораторной работы с заготовкой таблиц, графиков, схем.

Методические указания

- 1. Нагреть воздух внутри шкафа до устойчивого значения 60-90°C, фиксируя значения температуры через 5-10 мин. Данные занести в таблицу и построить график зависимости температуры от времени.
- 2. Измерить сопротивление изоляции образцов электрооборудования с помощью мегомметра.
 - 3. Данные зафиксировать в протоколе испытаний.
- 4. Поместить образцы испытуемого электрооборудования в сушильный шкаф на 15 с, а затем на 1 минуту. Затем извлечь образцы изделий и снова измерить сопротивление изоляции. Определить коэффициент абсорбции по формуле

$$K_{a\delta c} = R_{60}/R_{15} \ge 1,2$$

и сделать вывод о состоянии изоляции.

- 5. Выполнить измерения сопротивления изоляции через 10-15 мин и построить график зависимости сопротивления изоляции от времени.
- 6. Результаты наблюдений, таблицы, графики, выводы оформить в тетради для лабораторных работ.

Краткие теоретические сведения

В практике эксплуатации электрооборудования для повышения качества изоляции применяются различные способы сушки.

Различают следующие способы сушки: конвекционный, токовый, терморадиационный, индукционный, электроосмос, вакуумный, скоростной вакуумный. По конвекционному способу сушка электрооборудования производится в сушильных шкафах и печах при температуре 90 - 200°C.

При индукционном способе сушки для нагрева изделий используют явление магнитной индукции. Изделия помещают в специальный

индуктор, питаемый токами промышленной или высокой частоты. Под воздействием переменного магнитного тока в изделии наводятся индукционные токи, которые его нагревают.

Терморадиационный способ сушки заключается в нагреве изделий инфракрасными лучами. Генераторами лучей служат специальные электрические лампы, а также трубчатые электронагревательные элементы и металлические панели, нагретые до температуры 300-500°С, излучающие инфракрасные лучи. В первую очередь под воздействием инфракрасных лучей нагреваются металлические части, и за счет этого начинается интенсивное удаление влаги.

При *токовом* способе сушки через обмотку пропускается электрический ток, равный 0.5-0.7 от номинального.

Сушка по методу электроосмоса заключается в приложении постоянного напряжения между проводниками обмоток и корпусом электрической машины. Положительный полюс источника постоянного напряжения подключается к проводникам обмоток, а отрицательный – к корпусу. Последовательно с источником постоянного напряжения включают источник пульсирующего напряжения.

Сушка по электровакуумному методу заключается в создании вакуума внутри автоклава, куда помещается электрооборудование.

Скоростной электротермовакуумный метод отличется только тем, что создание вакуума и его большая глубина обеспечиваются за гораздо меньшие значения времени.

Основным недостатком конвекционного, индукционного, терморадиационного, токового методов является длительное протекание процесса сушки, следовательно, и большие энергозатраты.

Недостатками вакуумного и скоростного электротермовакуумного способа являются значительные затраты и необходимость применения специального оборудования.

Контрольные вопросы

- 1. С какой целью проводят сушку изоляции?
- 2. Какие способы сушки изоляции вы знаете?
- 3. Охарактеризуйте достоинства и недостатки каждого метода.
- 4. Как измерить сопротивление изоляции?
- 5. Что характеризует коэффициент абсорбции?

Рекомендованная литература

- 1. Атабеков В.Б. Ремонт трансформаторов, электрических машин и аппаратов. М.: Высш. шк., 1994.
- 2. Удалов С.Н. Эксплуатация систем электроснабжения: конспект лекций.- Новосибирск: НГТУ, 2003.

Приложение

Отчет

по лабораторной работе на тему: «Исследование процесса сушки изоляции электрооборудования»

1. Данные измерений сопротивления изоляции электрооборудования Таблица 5

	Изд	елия	
Параметры изоляции			
Сопротивление изоляции в холодном состоянии, Ом			
Сопротивление изоляции при температуре 60-75°C, Ом			
Коэффициент абсорбции			

2. Зависимость сопротивления изоляции от времени сушки

		_		_		_					

Таблица 6

Изделия	Сопротивление изоляции, Ом Время сушки, мин						
	0	0,25	1,0	10–15			

3. Таблица и график зависимости температуры нагрева воздуха от времени

Таблица 7

Температура, °С			
Время, мин			

н	Ы	D	\sim	т.	ΤТ	٠
\mathbf{L}	D	D	V.	Д.	DΙ	

Исполнитель: Преподаватель:

Лабораторная работа №3: Диагностика электродвигателей

Учебно-методический комплекс, включающий стенд (тренажеримитатор), методические указания к лабораторной работе, контрольные вопросы и задания, позволяет подготовить студентов к диагностике и определению причин, приводящих к выходу из строя асинхронных электродвигателей (с короткозамкнутым ротором). Возможно определение неисправностей на звук, тепло, перегрев в отдельном месте, что в последующем позволит проводить дефектировку вышедших из строя асинхронных электродвигателей с заполнением дефектировочной ведомости, где указываются явные и скрытые дефекты, схемы обмоток и причины выхода из строя (табл.9).

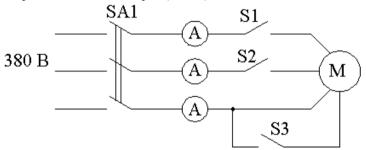


Рис 1. Принципиальная электрическая схема лабораторной установки

Порядок выполнения работы:

- 1. Определить целостность обмоток электродвигателя и собрать схему (рис.1).
- 2. Проверить электрическую прочность изоляции с помощью мегоомметра (минимально допустимая 0,5 МОм).
- 3. Выполнить с помощью переключателей имитацию аварийных режимов.
- 4. Данные наблюдений и показания приборов зафиксировать в отчете. Данные измерений занести в табл. 8.

. Таблица 8 Результаты измерений при аварийных режимах АД

Режимы	A1	A2	A3	Примечание
Нормальный				
Обрыв фазы				
Межвитковое замыкание				

Таблица 9 Признаки и возможные причины неисправностей АД

Признак неисправности	Возможная причина
Электродвигатель не развивает номинальной частоты вращения и	Одностороннее притяжение ротора вследствие износа подшипников, пре-
гудит	коса подшипниковых щитов или изгиба вала
Электродвигатель гудит, ротор вращается медленно, ток во всех трех фазах различен и даже на холостом ходу превышает номинальный	Обрыв одного или нескольких стержней обмотки ротора; неправильное соединение начала и конца фазы обмотки статора (фаза «перевернута»)
Ротор не вращается или вращается медленно, двигатель сильно гудит и нагревается	Обрыв фазы обмотки статора
Электродвигатель нагревается при номинальных нагрузках	Витковое замыкание в обмотке статора; ухудшение условий вентиляции вследствие загрязнения вентиляционных каналов
Недопустимо низкое сопротивление изоляции обмотки статора электродвигателя	Увлажнение или сильное загрязнение изоляции обмотки статора; старение или повреждение изоляции
Электродвигатель вибрирует во время работы, и после отключения при частоте вращения ротора, близкой к номинальной	Нарушение соосности валов; неуравновешенность ротора (наличие дисбаланса)
Электродвигатель сильно вибрирует, но вибрация прекращается после отключения его из сети, двигатель сильно гудит, ток в фазах неодинаков, один из участков статора быстро нагревается	Короткое замыкание в обмотке статора электродвигателя

Краткие теоретические сведения

Специфика сельскохозяйственного производства предъявляет к асинхронным электродвигателям с короткозамкнутым ротором целый ряд специальных требований, например:

- работа или длительное пребывание в широком диапазоне температур от минус 45 до плюс $40^{\circ}\mathrm{C}$;
- длительное пребывание и работа в среде с повышенной влажностью воздуха, содержащей агрессивные газы (аммиак, сероводород, углекислый газ), вредно действующие на изоляционные материалы, покрытия, обмоточные провода;

- электродвигатели могут обливаться дезинфицирующими растворами, находиться в среде аэрозолей и др.;
 - работа в условиях повышенной запыленности;
- работа при значительных длительных отклонениях напряжения питающей среды от номинального значения;
- устойчивость к кратковременным глубоким снижениям напряжения сети;
 - высокие пусковые и максимальные моменты;
- минимальный уход и простота эксплуатации, возможность обслуживания малоквалифицированным персоналом.

Перечисленные факторы в сельскохозяйственном производстве часто действуют одновременно и в совокупности, в связи с чем отдельные специальные электродвигатели общепромышленного исполнения (влаго-морозостойкие и химостойкие) нельзя считать удовлетворяющими комплексу предъявляемых требований. Учитывая изложенные требования, электропромышленностью разработаны асинхронные электродвигатели сельскохозяйственного назначения (модификация серий АО2 и Д). Электродвигатели предназначенны для работы во всех сельскохозяйственных помещениях и на открытом воздухе с питанием от сети переменного тока в следующих условиях:

- температура окружающей среды от −45 до +40°C;
- относительная влажность воздуха до 95±3% при температуре +20°C;
- содержание в воздухе горючей, летучей соломистой или хлопьевилной пыли до 1.16 г/м³:
- **п** длительное содержание химически активных примесей в воздухе: аммиака до $0.03~\text{г/m}^3$, сероводорода до 0.03~и углекислого газа до $14.7~\text{г/m}^3$. Возможна концентрация аммиака до $0.09~\text{г/m}^3$ продолжительностью до 5~ч в сутки в течение четырех месяцев в году.

В настоящее время широкое распространение нашла серия электродвигателей 4A, которая рассчитана на стандартную шкалу напряжений до 660 В и охватывает весь диапазон мощностей от 0,12 до 400 кВт. Электродвигатели серии 4A по сравнению с электродвигателями серии A2 и AO2 имеют преимущества в части уменьшения массы (в среднем на 18%), меньшие габариты, высоту осей вращения от 56 до 335 мм, большие пусковые моменты, меньший уровень воздушного шума и уровень вибрации, удобство при монтаже и эксплуатации.

Электрические машины повреждаются чаще всего из-за недопустимо длительной работы без текущего ремонта, плохого эксплуатационного обслуживания или нарушения режима работы, на который они рассчитаны. Повреждения электрических машин бывают механические и электрические.

К механическим повреждениям относят: выплавку баббита в подшипниках скольжения; разрушение сепаратора, кольца, шарика или ролика в подшипниках качения; деформацию или поломку вала ротора, ослабление прессовки сердечника ротора и т.д.; к электрическим повреждениям: пробой изоляции на корпус; обрыв проводников в обмотке; замыкание между витками обмотки; нарушение контактов и разрушение соединений, выполненных пайкой или сваркой; недопустимое снижение сопротивления изоляции вследствие ее старения, разрушения или увлажнения и др. Нами разработаны стенд для имитации аварийных режимов и лабораторная работа, где изучаются такие аварийные режимы асинхронных электродвигателей в сельском хозяйстве, как обрыв фазы, короткое замыкание на корпус и т.д., которые встречаются чаще, и их понимание необходимо для их распознавания.

Контрольные вопросы для самоподготовки

- 1. Чем характеризуются электродвигатели для сельского хозяйства?
- 2. Какие типы неисправностей чаще всего наблюдаются у асинхронных электродвигателей?
- 3. Какие аварийные режимы возникают при работе асинхронных электродвигателей?
- 4. Как выглядит диаграмма асинхронного электродвигателя при обрыве фазы?
- 5. Как определить скрытые дефекты асинхронных электродвигателей?

Данные вопросы служат для самоподготовки и самоконтроля знаний учащихся. Для проведения контроля предлагается тестовое задание

Тест «Ремонт асинхронных электродвигателей»

- 1. Какой вид дефекта приводит к перегреву электродвигателя на отдельном участке?
- 2. Какой вид дефекта является причиной, если электродвигатель гудит и перегревается?
- 3. Что приводит к сгоранию обмотки?
- 4. Что вызывает скрежет, шум в электродвигателе?
- 5. Что приводит к выходу из строя подшипников электродвигателя?

Варианты ответов:

- 1. Обрыв фазы
- 2. Межвитковое замыкание
- 3. Перегрузка
- 4. Отсутствие смазки
- 5. Посторонний предмет
- 6. Заторможение ротора

«Номер вопроса» – «номер ответа», который предлагается выбрать из вышеперечисленного списка.

1 2 3	4	5 –
-------	---	-----

Рекомендованная литература

- 1. Акимова Н.А. Монтаж, техническая эксплуатация и ремонт электрического и электромеханического оборудования: учеб. пособие для студ. учреждений сред. проф. образования / Н.А. Акимова и др. М.: Мастерство, 2001.
- 2. Москаленко В.В. Электрический привод: учеб. пособие для студ. Учреждений сред. проф. образования. М.: Высш. шк., 2001.
- 3. Китаев Е.В. Электротехника с основами промышленной электроники. М.: Высш. шк., 1980.
- 4. Кацман М.М. Электрические машины: учеб. пособие для студентов средн. проф. учеб. учреждений. М.: Высш. шк., 2000.
- 5. Дьяков В.И. Типовые расчеты по электрооборудованию. М.: Высш. шк., 1991.
- 6. Токарев Б.Ф. Электрические машины. М.: Энергоатомиздат, 1989.
- 7. Гусев Н.Н. Устройство и монтаж электрооборудования / Н.Н. Гусев, Б.Н. Мельцер. М.: Высш. шк., 1979.

Лабораторная работа №4:

Диагностика электроприводов транспортных средств Краткие теоретические сведения

С помощью электродвигателей приводятся в действие отопительные и вентиляционные установки, стекло- и фароочистители, стеклоподъемники и т.п. На автомобили устанавливаются коллекторные электродвигатели постоянного тока мощностью, выбираемой из ряда 6, 10, 16, 25, 40, 60, 90, 120, 150, 180, 250 Вт, и частотой вращения, соответствующей ряду 2000, 3000, 4000, 5000, 6000, 8000, 9000 и 10000 мин⁻¹.

Современные системы электропривода спроектированы так, что не требуют никакого обслуживания за весь срок эксплуатации. Требуется лишь проверять их работоспособность и крепление проводов к выво-

дам элементов электропривода. Электродвигатель, не работавший более трех-четырех месяцев, должен быть включен на 15-20 с для самоочистки коллектора. Отказы электроприводов вызываются электрическими и механическими причинами.

К механическим причинам относятся заедание подшипников, заклинивание редукторов, примерзание щеток к стеклу, закупорка каналов стеклоомывателей, задевание рычагов стеклоочистителя за кузов, обрыв гибких валов привода стеклоподъемников; к электрическим: нарушение контактов в соединителях, срабатывание защитной аппаратуры, повреждение выключателей и переключателей, выход из строя реле, сгорание обмоток электродвигателей, зависание щеток, подгорание коллектора, нарушение контактов в датчиках. При срабатывании предохранителя следует, прежде всего, выяснить причину срабатывания и лишь потом восстанавливать работоспособность предохранителя. В качестве защитных элементов в автомобильном электроприводе все чаще стали применяться позисторы.

Схема электродвигателя с электромагнитным возбуждением приведена на рис. 2, схема управления двухскоростным стеклоочистителем — на рис.3.

Порядок выполнения лабораторной работы

Проверку элементов электропривода можно осуществить, пользуясь следующими рекомендациями: неисправность выключателей определяется перемыканием их выводов; срабатывание предохранителя, который обычно встраивается внутрь моторедуктора, сопровождается характерным щелчком; отказ электродвигателя определяют, измеряя величину потребляемой им силы тока и частоту вращения при номинальном напряжении. Если сила тока слишком велика, частота вращения мала или ток отсутствует (двигатель не включается), значит, он неисправен.

Электродвигатели и моторедукторы ремонту не подлежат, но замену щеток, зачистку коллектора, смазку подшипников, замену шестерен редуктора можно выполнить достаточно просто, разобрав двигатель или моторедуктор.

Для разборки двигателя с возбуждением от постоянных магнитов в большинстве случаев достаточно отвернуть болты крепления задней крышки к корпусу, а для двигателей с электромагнитным возбуждением — болты, стягивающие переднюю и заднюю крышки.



Рис 2. Электродвигатель с электромагнитным возбуждением: 1 — якорь; 2 — крышка; 3 — винт; 4 — траверса; 5, 14 — плоские пружины; 6 — сальник; 7, 15 — подшипники; 8 — коллектор; 9 — щетки; 10 — щеткодержатель; 11 — корпус; 12 — статор; 13 — обмотка возбуждения; 16 — выходной вал

Проверку реле 522.3747 можно осуществить, подведя «+» аккумуляторной батареи к выводам J и 15, а « - » к выводу 31. Если при этом контрольная лампа мощностью не более 3 Вт, подсоединяемая между выводами S и 31, станет мигать, то реле в прерывистом режиме исправно. Исправность режима совместной работы стеклоочистки и стеклоомывателя проверяется подачей питания на выводы 15 и 31 и кратковременно на вывод 86. У исправного реле после обесточивания вывода 86 лампа продолжает светиться 3–7 с.

Проверку реле 451.3747 можно производить, запитав его через выводы 15 и 31 и подсоединив контрольную лампу к выводам 1 и 31. У исправного реле после кратковременного перемыкания выводов 2 и 15 контрольная лампа должна загореться и погаснуть через 5 с. Аналогично можно проверить реле 2902.3747, подведя питание к выводам 4 и 2 и кратковременно к выводу 1. После этого контрольная лампа, включенная между выводами 3 и 2, должна загореться и погаснуть через 4 с.

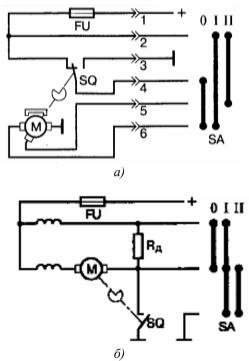


Рис.3. Схема управления двухскоростным стеклоочистителем: а) возбуждение от постоянных магнитов; б) электромагнитное возбуждение

Контрольные вопросы

- 1. Из каких основных частей состоит электродвигатель?
- 2. Что необходимо сделать, если при включении системы электродвигатель не работает, срабатывают предохранители?
- 3. Перечислите механические и электрические причины отказа электропривода.
- 4. Перечислите причины неисправности, если при включении системы электродвигатель не работает, предохранители не срабатывают.

Рекомендованная литература

- 1. Акимов С.В. Электрооборудование автомобилей / С.В. Акимов, Ю.П. Чижов. М., 2002.
- 2. Генералов И.А. Автомобиль ГАЗ-53А. М., 1978.
- 3. Боровской Ю.И. Устройство автомобилей. М., 1983.

Приложение

Титульный лист отчета

Новосибирский государственный аграрный университет

Инженерный институт

Кафедра ЭиАСХ

Отчет

о выполнении лабораторной работы на тему «Диагностика электроприводов транспортных средств»

Студент:		
Преподаватель:		

Новосибирск 2017

Лабораторная работа №5: Дефектовка и регулировка контакторов

Цель работы: Практически выполнить наладочные работы контакторов типа ПМЕ

Программа работы

- 1. Ознакомиться с конструкциями магнитных пускателей и провести внешний осмотр.
- 2. Выполнить проверку изоляции токоведущих частей.
- 3. Измерить сопротивления катушек постоянному току.
- 4. Провести регулировку механической части.
- 5. Выполнить проверку и настройку аппарата под током.
- 6. Составить отчёт и сделать заключение.

Методические рекомендации

При внешнем осмотре проверяются соответствие аппарата и его катушек проекту, состояние главных и блокировочных контактов и их пружин, гибких соединений, крепёжных болтов и т.п.

Сопротивление изоляции катушек и контактов целесообразно измерять совместно со схемой управления в целом (отключение отдельных аппаратов или их элементов следует проводить только для нахождения участков схемы с пониженной изоляцией). Измерения выполняются мегомметром на напряжении 500-1000 В. Сопротивление изоляции катушек магнитных пускателей, согласно ПУЭ, должно быть не ниже 0,5 МОм. Учитывая нормы сопротивления изоляции вторичных цепей, практически следует считать допустимой изоляцию не ниже 1 МОм.

Измерение сопротивления катушек постоянному току достаточно выполнять с точностью до 2–3%. Такие измерения могут быть выполнены омметрами, мостом типа ММВ и др.

Контакторно-релейные аппараты проходят регулировку на заводахизготовителях и, как правило, полностью соответствуют каталожным данным. При пусконаладочных испытаниях проверка механической части обычно сводится к следующему:

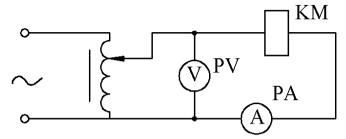
- 1. Проверка свободной самоустановки и плотности прилегания якоря к ярму.
 - 2. Затяжка винтов, крепящих силовые контакты и выводы к ним.
- 3. Регулировка растворов и провалов главных контактов и одновременности их замыкания.
 - 4. Проверка нажатия контактов.
 - 5. Затяжка винтов системы блок-контактов.
 - 6. Проверка центровки блок-контактов. Регулировка их зазоров.

- 7. Проверка крепления катушки.
- 8. Проверка крепления магнитопровода.
- 9. Зачистка рабочих поверхностей главных и блокировочных контактов.
 - 10. Проверка крепления демпферных витков.

Плотное прилегание якоря к ярму дает возможность избежать вибрации (гудения) и связанного с ней повышенного износа аппарата. Плотность прилегания якоря проверяют щупом толщиной 0,05 мм. Короткозамкнутые демпферные витки должны быть плотно зажаты в своих пазах.

При регулировке растворов и провалов следует убедиться в одновременном замыкании контактов всех трёх фаз и, главное, в наличии достаточного провала. Уменьшенный провал контакта на одной из фаз может привести к обрыву цепи, перегреву и даже сгоранию обмотки двигателя, включенного на две фазы.

При проверке и настройке аппаратов под током проводится измерение напряжений втягивания и отпадания. Практически напряжение втягивания при испытаниях магнитных пускателей переменного тока не должно превышать 80% номинального (с учетом 5 % запаса на неточность измерений, колебания питающего напряжения и др.). Напряжение отпадания не нормируется, но его следует измерить, так как оно характеризует состояние некоторых элементов аппарата (остаточный немагнитный зазор, конечное нажатие пружин, свободный ход якоря).


Напряжение отпадания измеряют также для оценки надежности удерживания магнитных пускателей при снижении напряжения в питающей сети.

Если гудение значительное, следует снять отпечаток прилегания якоря. Для этого на поверхность касания ярма кладут бумагу и включают магнитный пускатель под напряжение.

В случае выявления перекосов осуществляют дополнительную механическую регулировку, а при необходимости притирку полюсов.

Следует иметь в виду, что в процессе включения аппаратов переменного тока индуктивность катушки значительно увеличивается по мере уменьшения воздушного зазора. Общее сопротивление катушки определяется в основном ее индуктивным сопротивлением, поэтому ток катушки в момент включения, когда индуктивное сопротивление мало, может быть в 10–15 раз больше, чем при подтянутом якоре.

Проверка на напряжение втягивания должна осуществляться очень быстро во избежание перегрева катушек и регулировочных устройств током включения (рис. 4).

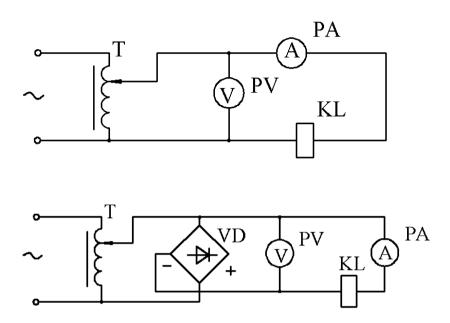
Puc.4. Схема проверки напряжения втягивания и отпадания магнитного пускателя

Во время испытания желательно измерить ток, протекающий через катушку при втянутом якоре и номинальном напряжении. Все испытания повторить 3 раза, в отчете также указать среднее значение.

Повышенное напряжение втягивания якоря может быть вызвано следующими причинами: увеличенным против номинального числом витков катушки, завышенным зазором якоря, чрезмерной затяжкой возвращающей пружины (при её наличии), затиранием контактов в дугогасительных камерах или осях.

Контрольные вопросы

- 1. Основные неисправности у контакторов и магнитных пускателей. Как их обнаружить и устранить?
- 2. Как устранить повреждения контактных поверхностей?
- 3. О чём говорит вибрация и гудение магнитного пускателя?
- 4. Во сколько раз ток катушки в момент включения больше, чем при подтянутом якоре?
- 5. Чем может быть вызвано повышенное напряжение втягивания якоря?


Лабораторная работа №6:

Дефектовка и регулировка промежуточных и защитных реле

Цель работы: практически выполнить проверку и регулировку реле РП-23 и РП-25.

Программа работы:

- 1. Ознакомиться с конструкцией реле.
- 2. Произвести внешний осмотр и проверку механической части реле.
- 3. Измерить сопротивление изоляции мегомметром.
- 4. Измерить сопротивления катушек постоянному току.
- 5. Выполнить проверку напряжения срабатывания и возврата реле.
- 6. Составить отчет и сделать заключение.

Puc.5. Схемы проверки напряжения срабатывания и возврата реле РП-23 и РП-25

Технические рекомендации

Промежуточные реле РП-23 применяются в схемах защиты и автоматики на постоянном оперативном токе в случаях, когда требуется размножать контакты каких-либо реле или коммутировать цепи с большим потреблением.

Реле выпускаются с четырьмя замыкающими и одним размыкающим контактами. Перестановкой (поворотом на 180°) угольников неподвижных контактов можно получить еще несколько комбинаций замыкающих и размыкающих контактов. Реле имеет четыре исполнения, отличающихся по номинальному напряжению.

Регулировка реле и корректировка электрических параметров выполняются следующим образом: вершины подвижных контактов должны совпадать с серединой плоскости неподвижных контактов (рис.5).

Регулировка производится перемещением пластинки и направляющей скобы; при притянутом якоре подвижная система реле должна иметь свободный ход 0,5–1,5 мм. Регулировка производится подгибанием хвостовика на свободном конце якоря; при опущенном якоре

подвижная система должна упираться в верхний упор, а хвостовик иметь свободный ход под упорной колодкой 0,5–2 мм. Регулировка производится отгибанием скобы. При зазоре около 0,4 мм между выступом на якоре и полюсным наконечником все замыкающие контакты должны замыкаться. При зазоре около 0,7 мм между верхним концом шпильки, стягивающей подвижную систему, и верхним упором размыкающие контакты должны быть замкнутыми.

Межконтактный зазор должен быть не менее 2,5 мм. Регулировка производится подгибанием контактных угольников и верхнего упора. Такая регулировка обеспечивает контактное давление в пределах 0,12-0.228.

Проверяется напряжение срабатывания и возврата при питании обмотки реле от источника напряжения постоянного тока с плавной регулировкой (опыт проводить три раза, посчитать среднее значение). Измерить сопротивление катушки постоянному току (опыт проводить три раза и посчитать среднее значение).

Промежуточное реле РП-25 применяется в системах защиты автоматики на переменном оперативном токе. Электромагнит переменного тока сообщает подвижной контактной системе значительно большее ускорение, чем электромагнит постоянного тока реле РП-23. При переделке замыкающих контактов на размыкающие и отсутствии ограничения прогиба контактной пружины снизу пружины подвижных контактов при срабатывании реле из-за большого прогиба при ударе о нижний упор работают в очень тяжелых условиях. Поэтому не рекомендуется применение реле с числом размыкающих контактов, большим двух. Переделка в этом случае производится поворотом на 180° контактных угольников на зажимах и удалением второго сверху контактного мостика.

Регулировка реле РП-25 выполняется следующим образом:

- при притянутом якоре зазоры между плоскостями полюсов электромагнита и якоря должны отсутствовать. Устранение зазоров производится перемещением сердечника при ослабленных болтах его крепления;
- при отпущенном якоре подвижная контактная система должна упираться в верхний упор; между хвостовиком якоря и плоскостью выступа упорной колодки должен быть зазор 0,5–0,8 мм. Регулировка производится подгибанием специального язычка на хвостовике якоря;
- при притянутом якоре подвижная контактная система должна иметь свободный ход 0,5–1,5 мм. Регулировка производится подгибанием хвостовика якоря;

 при зазоре 0.7 мм между нижней кромкой экранированной части полюса сердечника и якорем все замыкающие контакты должны замыкаться.

В остальном регулировка реле РП-25 аналогична регулировке реле РП-23.

Измерение сопротивления катушек постоянному току производить методом вольтметра-амперметра.

Технические данные

Реле РП-23

Диапазон рабочих температур в пределах от -20°C до +40°C. Напряжение срабатывания в холодном состоянии при температуре 20 ± 5 °C не более 70% $U_{\text{ном}}$. Время срабатывания при номинальном напряжении не превышает 0.06 с.

При изменении температуры от -20 до +40 °C отклонение напряжения может находиться в пределах от -20 до +30%, напряжение возврата в пределах ± 35 %, а время срабатывания в пределах ± 20 % величины, измеренной при температуре 20 ± 5 °C.

Мощность, потребляемая реле, не превышает 6 Вт. Реле длительно выдерживает напряжение $110\%~U_{\rm HOM}$. Механизм реле выдерживает без отказов в работе 100000 срабатываний. Катушки реле наматываются проводом ПЭВ-2. Обмоточные данные катушек приведены в табл. 10.

Таблица 10

Номинальное напряжение, В	Число витков	Диаметр провода, мм	Сопротивление, Ом
24	3400	0,23	120
48	7100	0,17	485
110	15200	0,11	2400
220	30000	0,08	9300

Реле РП-25

При изменении частоты на \pm 3 Γ ц от номинального значения напряжение срабатывания изменяется не более чем на \pm 10%, а напряжение возврата не более чем на \pm 15% значения, измеренного при частоте 50 Γ ц.

При изменении температуры окружающего воздуха в диапазоне -20 до $\pm 40^{\circ}$ C отклонение напряжения срабатывания может находиться в пределах $\pm 5\%$, напряжение возврата — в пределах $\pm 60\%$, а время срабатывания — в пределах $\pm 70\%$ значения, измеренного при температуре $\pm 20^{\circ}$ C.

Остальные параметры такие же, что и реле РП-23. Обмоточные данные катушек приведены в табл. 11.

Таблица 11

Номинальное напряжение, В	Число витков	Диаметр провода, мм
100	3000	0.21
127	3850	0.18
220	6700	0.14

Контрольные вопросы

- 1. Чем отличается магнитная система реле РП-23 от реле РП-25?
- 2. Какое количество срабатываний выдерживает механизм реле?
- 3. Как влияет температура окружающей среды на параметры реле?
- 4. Как проводить ревизию реле?
- 5. Как влияет частота сети на параметры реле РП-25?

Лабораторная работа №7:

Настройка защиты электродвигателя посредством ПЧВ

Оборудование: стенд

1. Краткие теоретические сведения

В основу данного устройства, которое еще называют инвертором, заложено двойное изменение формы сигнала питающей электрической сети.

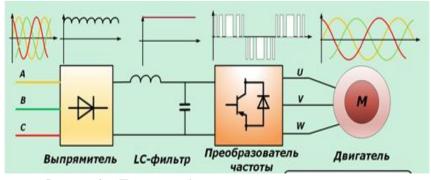


Рисунок 6 – Принцип работы частотного регулирования

На рисунке 6 показано как напряжение подается на силовой выпрямительный блок с мощными диодами, которые убирают синусоидальные гармоники, но оставляют пульсации сигнала. Для их ликвидации предусмотрена батарея конденсаторов с индуктивностью (LC-фильтр), обеспечивающая стабильную, сглаженную форму выпрямленному напряжению.

Затем сигнал поступает на вход преобразователя частоты, который представляет собой мостовую трехфазную схему из шести силовых транзисторов серии IGBT или MOSFET с диодами защиты от пробоя напряжений обратной полярности. Используемые ранее для этих целей тиристоры не обладают достаточным быстродействием и работают с большими помехами.

Для включения режима «торможения» двигателя в схему может быть установлен управляемый транзистор с мощным резистором, рассеивающим энергию. Такой прием позволяет убирать генерируемое двигателем напряжение для защиты конденсаторов фильтра от перезарядки и выхода из строя.

Способ векторного управления частотой преобразователя позволяет создавать схемы, осуществляющие автоматическое регулирование сигнала системами САР. Для этого используется система управления:

- 1. амплитудная;
- 2. ШИМ (широтного импульсного моделирования).

Метод амплитудного регулирования основан на изменении входного напряжения, а ШИМ — алгоритма переключений силовых транзисторов при неизменном напряжении входа.

При ШИМ регулировании создается период модуляции сигнала, когда обмотка статора подключается по строгой очередности к положительным и отрицательным выводам выпрямителя.

Поскольку частота такта генератора довольно высокая и расположена в пределах $2\div15~\mathrm{к}\Gamma$ ц, то в обмотке электродвигателя, обладающего индуктивным сопротивлением, происходит их сглаживание до синусоиды нормального вида.

Способы ШИМ управления позволяют максимально исключить потери энергии и обеспечивают высокий КПД преобразования за счет одновременного управления частотой и амплитудой. Они стали доступны благодаря развитию технологий управления силовыми запирае-

мыми тиристорами серии GTO или биполярных марок транзисторов IGBT, обладающих изолированным затвором.

2 Описание прибора

Прибор имеет на лицевой стороне панель управления с дисплеем, клавишами и потенциометром, как показано на рисуноке 2.1

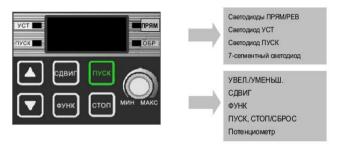


Рисунок 7 – Панель управления

На дисплее отображаются символы значение которых отображено на рисунке 7 и светодиодные сигналы с дисплеем показывающие работу двигателя при определенных режимах работы таблица 12

Светодиод инвертора	цифра	Светодиод инвертора	буква	Светодиод инвертора	буква	Светодиод инвертора	буква
8	0	R	Α	ħ	к	u	U
1	1	ь	В	L	L	u	٧
2	2	Ε	С	ī.	М	"	w
3	3	ď	D	n	N	5	х
ч	4	Ε	E	8	0	y	Υ
5	5	F	F	P	Р	Ξ	z
5	6	E	G	9	Q		
7	7	H	н	,	R		
8	8	;		5	s		
3	9	1	J	Ŀ	т		

Рисунок 8 – Представление букв и цифр на дисплее

Значение светодиодных сигналов и дисплея Таблица 12

Дисплей	Описание	
ПРЯМ	Горит во время вращения в	Мигают при возник-
IIIVIVI	прямом направлении	новении
PEB	Горит во время вращения в	сбоя
ILD	обратном направлении	
УСТ	Горит во время установки	
yC1	параметра	
ПУСК	Горит во время вращения в	

	прямом направлении	
		·
7-сегментный	Отображает текущее значение	и информацию о па-
	раметрах	

В инверторе используется 7-сегментный дисплей. Он отображает буквы и цифры так, как показано в приведённой выше таблице. Убедитесь, что вы понимаете их правильно при чтении сообщений о неисправности и функциональной информации.

Семи сегментный дисплей работает в трёх Режимах: включён, выключен и мигает. В руководстве Режим "включён" показан чёрным цветом, "мигание" – серым, а"выключен" не показывается отдельно.

Управление преобразователем частоты производится при помощи кнопок управления и потенциометром функции, которые приведены в таблице 13 ,а также клеммы подключения управляющих сигналов на рисунке 2.3

Значение кнопок управления

Таблица 13

Кнопка	Наименование	Описание		
	Увеличение	Листание кодов или увеличение величины		
		параметра		
_	Уменьшение	Листание кодов или уменьшение величины параметра		
_				
ПУСК	Работа	Команда начала работы		
СТОП	Стоп	СТОП: останов во время работы; СБРОС:		
		сброс в случае неполадки		
ФУНК	Функция	Редактирование параметров или сохранение		
		отредактированных величин параметров		
СДВИГ	Сдвиг	Перемещение между группами/ Сдвиг влево		
		при изменении параметра		
Потенциом	метр	Используется для изменения выходной час-		
		ТОТЫ		

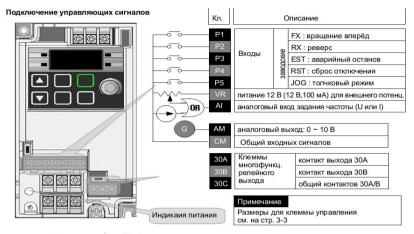


Рисунок 9 – Подключение управляющих сигналов

В инверторе имеется две разные группы параметров:

Группа привода – отвечает за основные параметры, необходимые для работы инвертора: заданная частота, время разгона и замедления.

Группа привода – отвечающая за группу параметров дополнительных функций.

Можно перемещаться между группами, если нажать кнопку СДВИГ при наличии кода 0 в группе привода/ группе программ, как показано на рисунке 2.4. Если нажать СДВИГ при коде, отличающемся от 0, происходит переход к первому коду выбранной группы, а если нажать СДВИГ ещё раз, выполняется переход между группами.

Заданная частота устанавливается в первом коде группы привода. Поставка выполняется со значением 0,00, установленным по умолчанию, и любые изменения частоты привода показываются при их выполнении пользователем

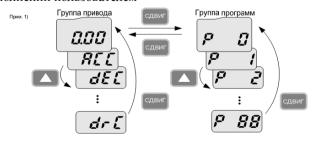


Рисунок 10 – Переход между группами параметров

3 Порядок выполнения настройки работы ПЧВ

Работа выполняется группой учащихся из двух-трех человек. Для снятия времятоковой характеристики служит специальный стенд.

Перед тем как использовать устройство и выполнять пользовательское программирование, сбросьте пользовательские параметры на исходные значения.

Сброс параметров производим кнопкой СТОП

или замыканием многофункциональной клеммой P4 с общей клеммой CM

3.1 Настройка основных параметров.

Выходной ток : группа привода $CUr - \kappa$. ФУНК – κ .ПУСК – задаем нужное значение регулятором – κ . ФУНК – κ . СДВИГ – выходим в группы привода.

Выходное напряжение : группа привода dCL – к. ФУНК – к.ПУСК – задаем нужное значение регулятором – к. ФУНК – к. СДВИГ – выходим в группы привода.

Обороты двигателя: группа привода rPM – к.ПУСК – задаем нужное значение

Мощность двигателя: группа программ $P40 - \kappa.\Phi YHK - задаем нужное значение – <math>\kappa.\Phi YHK - \kappa.\Pi yck$

3.2 Настройка режимов работы

Установка частоты

Установка частоты задается в группе привода код Frq — кнопка ФУНК — задаем нужную частоту вместо 0.00 кнопками увеличение/уменьшение либо настраиваем патенциометром — нажимаем кнопку ФУНК для ввода величины.

Установка времени разгона и времени торможения

• Установка времени разгона/замедления на основе максимальной частоты

Группа	Код	Название параметра	Настрой- ка	Диапазон	Началь- ное зна- чение	Ед. изм.
Группа привода	ACC	Время разгона	-	0 ~ 6000	5.0	С
	dEC	Время замедления	-	0 ~ 6000	10.0	С
Группа программ	P16	Максимальная частота	-	0 ~ 200	60.0	Гц

- Установите нужное время разгона/замедления в коде ACC/dEC группы привода.
- Время разгона/замедления означает время, затрачиваемое на разгон/замедление от начальной частоты до максимальной частоты, которое формирует временную характеристику разгона/замедления с максимальной частотой. Следовательно, наклон этой характеристики разгона/замедления при постоянной максимальной частоте является одинаковым вне зависимости от заданной частоты.

Разгон : группа привода АСС – к. ФУНК – задаем нужное значение – к. ФУНК 2 раза – к. ПУСК – выходим в группы привода.

Торможение: группа привода dEC – к. ФУНК – задаем нужное значение – к. ФУНК 2 раза – к. ПУСК – выходим в группы привода.

Установка реверса

drC	Выбор направле-	F	вперёд
	ния вращения	,	nonono
	двигателя	-	реверс

FX: против часовой стрелки

Вперёд: группа привода $drC - \kappa$. ФУНК – задаем значение $F - \kappa$.

ФУНК 2 раза – к. Пуск

Обратное: группа привода $drC - \kappa$. ФУНК – задаем значение $r - \kappa$.

ФУНК 2 раза - к. Пуск

3.3 Настройка защиты

P24	Выбор отключе- ния по перегруз- ке	0~1	Этот параметр выключает выход инвертора при перегрузке двигателя. Функция защиты от перегрузки работает, когда установлена на 1.	1	0
P25	Уровень отклю- чения по пере- грузке	50 ~ 200 [%]	Установка величины тока перегрузки, основанной на процентах от номиналь- ного тока двигателя (Р43)	180	0
P26	Время для от- ключения по пе- регрузке	0 ~ 60 (c)	Выход инвертора отключается, когда ток, соответствующий уровню отключения по перегрузке (Р25), протекает в течение времени отключения по перегрузке.	60	0

Аварийное отключение: группа программ Р24 – к.ФУНК – задаем значение 1 – к.ФУНК 2 раза – к.Пуск

Время отключения: группа программ $P26 - \kappa.\Phi YHK - задаем нужное значение – <math>\kappa.\Phi YHK$ 2 раза – $\kappa.\Pi yc\kappa$

Операция автоматического повторного пуска

Группа	Код	Название параметра	Настрой- ка	Диапазон	Начальное значение	Ед. изм.
Группа про- грамм	P38	Число попыток автоматического повторного пуска	-	0 ~ 10	0	
	P39	Период времени автоматического повторного пуска	-	0 ~ 60	1.0	С

Повторный пуск при отключении: группа программ Р38 – к.ФУНК – задаем нужное значение – к.ФУНК 2 раза – к.Пуск

Время повторного пуска: группа программ Р39 – к.ФУНК – задаем нужное значение – к.ФУНК 2 раза – к.Пуск.

Список используемой литературы

- 1. Ерошенко Г.Н. Эксплуатация электрооборудования: Учебник / Г.Н. Ерошенко, Н.П. Кондратьева; Министерство образования и науки РФ М.: НИЦ ИНФРА-М, 2014. 336 с.:
- 2. Правила технической эксплуатации электроустановок потребителей.
- М.: ИНФРА-М, 2003. 263 с
- 3. Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок. Правила введены в действие с 1 июля 2001 г. 2-е изд. М.: ИНФРА-М, 2008. 158 с.
- 4. Грунтович Н.В. Монтаж, наладка и эксплуатация электрооборудования: Учебное пособие / Н.В. Грунтович. М.: Нов. знание: НИЦ ИН-ФРА-М, 2013. 271 с.
- 5. Акимова Н.А. Монтаж, техническая эксплуатация и ремонт электрического и электромеханического оборудования: учеб. пособие для студ. учреждений сред. проф. образования / Н.А. Акимова и др. М.: Мастерство, 2001.
- 6. Лут Н.Т. Эксплуатация электрооборудования / Н.Т. Лут, А.И. Чмиль Благовещенск: Благовещ. с.- х. ин-т, 1990.
- 7. Удалов С.Н. Эксплуатация систем электроснабжения. Новосибирск: Новосиб. гос. техн. ун-т, 2003.

Составители:

Самохвалов Максим Владимирович Болотов Денис Сергеевич

ЭКСПЛУАТАЦИЯ ЭЛЕКТРООБОРУДОВАНИЯ И СРЕДСТВ АВТОМАТИКИ

Методические указания для лабораторных работ

Редактор $M.\Gamma$. Девищенко Компьютерная верстка B.H. Зенина

Подано в печать «	»201	17 г. Формат 60 х 84 $^{1}/_{16}$
Объем <mark>2,5</mark> учизд. л., 2,5 усл. печ. л.		
Тираж 10	экз. Изд №	_ Заказ

Отпечатано в Издательском центре НГАУ «Золотой колос» 630039, Новосибирск, ул. Добролюбова, 160, кааб. 106. Тел./факс (383) 267-09-10. E-mail: 2134539@mail.ru