ФГБОУ ВО «НОВОСИБИРСКИЙ ГАУ» ИНЖЕНЕРНЫЙ ИНСТИТУТ

АВТОМАТИЗИРОВАННЫЙ ЭЛЕКТРОПРИВОД

Методические указания и задания к расчётно-графической работе для студентов заочной формы обучения

УДК

Кафедра техносферной безопасности и электротехнологий

Авторы: канд. техн. наук, доцент A.Ю. Kузнецов канд. техн. наук, доцент B.Л. Oснович заведующий лабораториями, ассистент C.A. Hиконов аспирант Д.C. Болотов

Рецензент: доцент, канд. техн. наук А.Т. Калюжный

Автоматизированный электропривод: метод. указания и задания к расчётно-графической работе для студентов заочной формы обучения / Новосиб. гос. аграр. ун-т. Инженер. ин-т; сост.: А.Ю. Кузнецов, В.Л. Основич, С.А. Никонов, Д.С. Болотов - Новосибирск, 2018. - 30 с.

В данных методических указаниях представлены варианты к расчетнографической работе, а также методики и примеры решения заданий.

Методические указания предназначены для студентов НГАУ заочной формы обучения по направлению подготовки: Агроинженерия, (профиль: Электрооборудование и электротехнологии в агропромышленном комплексе).

Утверждены и рекомендованы к изданию учебно-методическим советом Инженерного института (протокол №5 от 12 декабря 2017 г.).

- © Новосибирский государственный аграрный университет, 2018
- © Кузнецов А.Ю., Основич В.Л., Никонов С.А., Болотов Д.С., 2018

ВВЕДЕНИЕ

Методические указания содержат все сведения, необходимые для самостоятельного выполнения расчётно-графической работы по дисциплине «Автоматизированный электропривод». Они знакомят студентов с основными теоретическими положениями расчета и проектирования автоматизированного электропривода.

Задания к расчётно-графической работе посвящены вопросам оценки и расчета механических и регулировочных характеристик электроприводов с двигателями постоянного и переменного тока, в том числе с релейным управлением посредством регулируемых сопротивлений в цепях электродвигателей.

В процессе выполнения расчётно-графической работы студенты приобретают навыки управления координатами электропривода и их регулирования, умение исследовать и анализировать его характеристики.

Методические указания составлены в соответствии с программой курса дисциплины «Автоматизированный электропривод» для студентов вузов заочной формы обучения направления подготовки - Агроинженерия, по профилю - Электрооборудование и электротехнологии в агропромышленном комплексе. При подготовке методических указаний были использованы учебники по электроприводу Л.С. Цейтлина, В.В. Москаленко, В.М. Васина, Г.П. Хализева.

1. ОБЩИЕ УКАЗАНИЯ

Индивидуальное задание для каждой расчётно-графической работы состоит из шести заданий.

Первые задания всех вариантов предусматривают построение естественных и искусственных механических или скоростных характеристик двигателей постоянного тока или асинхронных двигателей.

Для двигателя постоянного тока независимого возбуждения механические и скоростные характеристики $\omega = f(M)$ и $\omega = f(I_{\rm R})$, являются прямыми линиями. Для их построения достаточно знать две точки в прямоугольной системе координат.

Естественную механическую и скоростную характеристику можно построить по точкам с координатами (рисунок - 1):

- 1) $\omega = \omega_{\scriptscriptstyle H}$ и $M = M_{\scriptscriptstyle H}$ (механическая) или $I = I_{\scriptscriptstyle H}$ (скоростная)
- 2) $\omega = \omega_o$; и M=0 (механическая) или I=0 (скоростная) где $\omega_{\!\scriptscriptstyle H}$ номинальная угловая скорость, рад/с

$$\omega_{H} = \frac{n_{H}}{9.55}, \tag{1}$$

 M_{H} - номинальный момент, Нм,

$$M_{\scriptscriptstyle H} = \frac{1000P_{\scriptscriptstyle H}}{\omega_{\scriptscriptstyle H}},\tag{2}$$

где P_{H} - номинальная мощность, кВт;

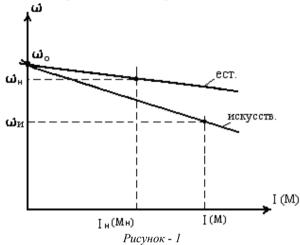
 ω_0 - угловая скорость идеального холостого хода, рад/с,

$$\omega_o = \frac{U_{_{\rm H}} \cdot \omega_{_{\rm H}}}{U_{_{\rm U}} - I_{_{\rm U}} r_{_{\rm T}}},\tag{3}$$

$$r_{\partial} = 0.5(1 - \eta_H) \frac{u_H}{I_H},$$
 (4)

Искусственную характеристику можно построить по точкам с координатами:

- 1) $\omega = \omega_o$ и M = 0 (механическая) или I = 0 (скоростная
- 2) $\omega = \omega_u$ и M (механическая) или I (скоростная)


где ω_u - угловая скорость на искусственной характеристике, соответствующая произвольному значению момента - M, рад/с или тока - I

$$\omega_u = \omega_o (1 - \frac{I R}{U_H}), \qquad (5)$$

где R - полное сопротивление якорной цепи, Ом.

$$R = (r_o + R_{\mathcal{I}}), \tag{6}$$

где R_{∂} - добавочное сопротивление в якорной цепи двигателя, Ом.

Естественную механическую и скоростную характеристику дви- гателя постоянного тока последовательного возбуждения строят по данным универсальных характеристик, которые в табличной форме имеют следующий вид:

Таблица 1

ω*	1,6	1,1	0,8	0,65	0,5
M*	0,3	0,75	1,2	2,0	3,2
I*	0,4	0,8	1,2	1,6	2,0

Здесь все величины выражаются в относительных единицах. Подобную форму выражения величин используют при расчете характеристик и сопротивлений двигателей как постоянного, так и переменного тока.

Относительные единицы служат для выражения основных размерных величин безразмерными числами, что оказывается целесообразным при расчете пусковых реостатов.

Относительные числа обозначаются так же, как и размерные, но им присваивается

индекс *.

При расчете относительных величин за базовое значение берется номинальное значение величины. Исключение составляет угловая скорость, при расчете относительного значения которой за базовое значение берется угловая скорость идеального холостого хода:

1) относительный ток

$$I^{\bullet} = \frac{I}{I_{u}},\tag{7}$$

где I - текущее значение тока, A;

 I_{H} - номинальное значение тока, A.

2) относительный момент

$$M^{\bullet} = \frac{M}{M_{u}},\tag{8}$$

где M - текущее значение момента, $H_{\rm M}$;

 M_{H} - номинальное значение момента, Нм.

3) относительное сопротивление

$$R^{\bullet} = \frac{R}{R_{u}}, \tag{9}$$

где R - текущее значение сопротивления, Ом;

 R_{H} - номинальное значение сопротивления, Ом.

- для двигателей постоянного тока

$$R_{\scriptscriptstyle H} = \frac{U_{\scriptscriptstyle H}}{I_{\scriptscriptstyle H}} \,, \tag{10}$$

- для асинхронных двигателей с фазным ротором

$$R_{H} = \frac{E_{2H}}{\sqrt{3}I_{2H}},\tag{11}$$

где E_{2n} , - номинальное значение линейной ЭДС в роторе, В;

 I_{2n} - номинальный фазный ток в роторе, А. 4) относительная угловая скорость

для двигателей параллельного и независимого возбуждения:

$$\omega^{\bullet} = \frac{\omega}{\omega_{o}},\tag{12}$$

для двигателей последовательного и смешанного возбуждения:

$$\omega^{\bullet} = \frac{\omega}{\omega_{H}},\tag{13}$$

Построение естественной механической или скоростной характеристики двигателя постоянного тока последовательного возбуждения производится табличным методом (таблица 2).

Естественная характеристика					Искус	ственная		
I,A	I^*	ω^*	ω,ра∂/с	M^*	М,Нм	Ee,B	Eu,B	ω_u , pa ∂/c
1	2	3	4	5	6	7	8	9

- 1. Последовательность решения:
- 1.1 Задаются значениями тока в якорной цепи (от минимального $0.4\ I_{\scriptscriptstyle H}$ до максимального $2\ I_{\scriptscriptstyle H}$) и эти значения вносят в графу 1 таблицы 2.
- 1.2 От размерных значений токов переходят к относительным значениям по формуле 7 и заполняют графу 2 таблицы 2.
- 1.3 Пользуясь универсальными кривыми, по относительным значениям I^* находят относительные значения угловых скоростей ω^* и заполняют графу 3 таблицы 2.
- 1.4 От относительных значений угловых скоростей переходят к размерным значениям по формуле: $\omega = \omega_* \omega_h$, и заполняют графу 4 таблицы 2.
- 1.5~ Пользуясь универсальными кривыми, по относительным значениям тока I^* , находят соответствующие значения моментов M^* и заполняют графу 5~ таблицы 2.
- $1.6~{
 m OT}$ относительных значений моментов переходят к размерным по формуле: $M=M_*M_{_H}$ и заполняют графу 6 таблицы 2.
- 1.7 Рассчитывается ЭДС машины на естественной характеристике по формуле:

$$E_e = U_{_H} - Ir_{_{\partial}}$$

и заполняется графа 7 таблицы 1.

1.8 Рассчитывается ЭДС машины на искусственной характеристике по формуле:

$$E_u = U_{\scriptscriptstyle H} - I(r_{\scriptscriptstyle \partial} + R_{\scriptscriptstyle I\hspace{-.1em}I})$$

и заполняется графа 8 таблицы 1.

1.9 По формуле 14 рассчитываются угловые скорости на искусственной характеристике и заполняется графа 9 таблицы 1.

$$\omega_u = \frac{E_u}{E_e} \omega_e \,, \tag{14}$$

Если внутреннее сопротивление двигателя последовательного возбуждения r_{∂} не задано, то его ориентировочно рассчитывают по формуле:

$$r_{\partial} = 0.75(1 - \eta_H) \frac{U_H}{I_H},$$
 (15)

По данным граф 1 и 9 строится искусственная скоростная характеристика.

По данным граф 6 и 9 строится искусственная механическая характеристика

Для асинхронного двигателя с фазным ротором естественная механическая характеристика $\omega = f(M)$ строится по упрощенной формуле Клосса

$$M = \frac{2M_{\kappa}}{\frac{S}{S_{\kappa}} + \frac{S_{\kappa}}{S}},\tag{16}$$

где M_{κ} - критический момент, Нм;

 s_{κ} - критическое скольжение;

$$S_{K} = S_{H} \left(\lambda + \sqrt{\lambda^{2} - 1} \right), \tag{17}$$

где S_H - номинальное скольжение;

$$S_{\rm H} = \frac{\omega_o - \omega_{\rm H}}{\omega_o},\tag{18}$$

где $\omega_{\!\scriptscriptstyle H}$ - номинальная угловая скорость, рад/с;

 ω_o - синхронная угловая скорость, рад/с.

$$\omega_o = \frac{2\pi \cdot f}{p},\tag{19}$$

где f - частота питающей сети, Γ ц;

р - число пар полюсов;

 λ - перегрузочная способность асинхронного двигателя.

$$\lambda = \frac{M_{\kappa}}{M_{H}},\tag{20}$$

где M_{H} - номинальный момент, Hм;

$$M_{\scriptscriptstyle H} = \frac{1000P_{\scriptscriptstyle H}}{\omega_{\scriptscriptstyle H}},\tag{21}$$

где P_{μ} - номинальная мощность, кВт.

Если число пар полюсов p не задано, то его можно определить из формулы (19), подставив в нее вместо ω_0 значение $\omega_{\scriptscriptstyle H}$ и округлив полученное значение до ближайшего целого числа.

Изменяя значение скольжений s от 1 до 0, по формуле 16 рассчитывают значения момента, а по формуле $\omega = \omega_o(1 - s)$ рассчитывают значения угловой скорости ω и заполняют таблицу 3.

Таблица 3

S	1	0,9	•••	0
M				
ω				
S_u				

Для построения искусственной характеристики рассчитывается скольжение S_u по формуле:

$$s_u = \frac{s_e R_p}{r_p} \,, \tag{22}$$

где $R_{p} = r_{p} + R_{d}$ - полное сопротивление роторной цепи, Ом;

 R_{θ} - дополнительное сопротивление в цепи ротора, Ом;

 r_p - внутреннее сопротивление роторной обмотки, Ом.

$$r_p = S_H R_H, \tag{23}$$

где R_{H} - номинальное сопротивление роторной цепи, Ом. (см. формулу 11)

Заполняется последняя графа таблицы 3. Затем по расчетным данным S_u , M (таблица 3) строится искусственная характеристика.

Вторые задания вариантов включают в себя задачи по расчету пусковых сопротивлений для двигателей постоянного тока независимого и последовательного возбуждения и для асинхронных двигателей с фазным ротором.

Расчет пусковых сопротивлений для асинхронных двигателей и для двигателей постоянного тока независимого возбуждения может быть произведен аналитическим или графическим методом (в задачах указан метод расчета). Для двигателей постоянного тока последовательного возбуждения используется графоаналитический метод расчета.

Если в условии задачи не указано количество ступеней пускового реостата, считая, что управление двигателем релейно-контакторное (независимо от типа двигателя), можно принять следующее число ступеней:

- для двигателя малой мощности (до 10кBт) *m*= 1-2;
- для двигателей средней мощности (до $50\kappa B\tau$) m=2-3;
- для двигателя большой мощности (свыше 50 кBt) m=3-4,

где m - число ступеней пускового реостата,

Различают нормальный и форсированный пуск.

Форсированный пуск применяют для приводов, часто пускаемых или часто реверсируемых. В этом случае по условию задачи задается пусковой момент, который выбирается из условия:

$$M*_{l} < (2-3)$$

Нормальный пуск применяют для приводов, редко пускаемых, но длительно работающих. В этом случае по условию задачи задается переключающий момент $M_{\ 2}^*$, который выбирается из условия

$$M^*_{2} \ge (1, 1 - 1, 2) M_c^*,$$

где ${M_c}^*$ - относительный статический момент.

Аналитический метод расчета

Рассмотрим два возможных случая:

- а) число ступеней пускового реостата m задано (например m=3), пуск форсированный, т.е. по условию задачи задан пусковой момент $M_{\ I}^{*}$
- 1) рассчитывается отношение пускового момента к переключающему λ по формуле:

$$\lambda = \sqrt[m]{\frac{1}{r_{\partial}^* M_1^*}}, \qquad (24)$$

где r_{δ}^{*} - внутреннее сопротивление двигателя параллельного или независимого возбуждения в относительных единицах.

$$r_{\partial}^* = \frac{r_{\partial}}{R_{\mu}}, \tag{25}$$

2) проверяется переключающий момент:

$$M_2^* = \frac{M_1^*}{\lambda},$$
 (26)

3) далее по формулам 27, 28, 29 рассчитываются сопротивления отдельных секций пускового реостата r_1 , r_2 , r_3 . Номер секции пускового реостата указывает на очередность, в которой они шунтируются в процессе пуска двигателя.

$$r_3 = r_0(\lambda - 1), \tag{27}$$

$$r_2=r_3\lambda$$
, (28)

$$r_1 = r_2 \lambda,$$
 (29)

- б) число ступеней пускового реостата m задано, пуск нормальный, т.е. по условию задачи задан переключающий момент ${M_2}^*$.
 - 1) рассчитывается λ по формуле:

$$\lambda = {}_{m+1} \sqrt{\frac{1}{r_{\partial}^* M_2^*}} \,, \tag{30}$$

2) проверяется пусковой момент:

$$M_1^* = M_2^* \lambda \,, \tag{31}$$

3) далее по формулам 27, 28, 29 рассчитываются сопротивления r_1, r_2, r_3 .

Следует иметь в виду, что:

- для МПТ параллельного (независимого) возбуждения действительны соотношения

$$I_1^* = M_1^*, (32)$$

$$I_2^* = M_2^*, (33)$$

- формулы 27; 28; 29; действительны и для относительных значений величин.
- 4) Метод расчета пусковых реостатов для асинхронного двигателя аналогичен методу расчета для МПТ параллельного возбуждения. Разница состоит только в том, что в формулу 27 вместо r_{∂} подставляется r_{p} , а в формулу 24 для расчета λ вместо r_{∂} подставляется номинальное скольжение s_{n} .

Графический метод расчета базируется на следующих положениях:

- 1 . Механические характеристики линейны и пересекаются в одной точке $\omega_{\scriptscriptstyle 0}$
- 2. На линии номинального момента относительный перепад угловой скорости $\Delta \omega^*$ численно равен относительному сопротивлению в якорной цепи R^* :

$$\Delta \omega^* = R^*, \tag{34}$$

Построение пусковой диаграммы начинается с построения естественной характеристики по точкам с координатами:

1)
$$\Delta \omega^* = r^*_{\partial}, M^* = 1;$$

2) $\omega^* = 1, M^* = 0;$

Задача состоит в том, чтобы, при принятых или заданных пусковом и переключающем моментах, через заданное число ступеней выйти на построенную естественную характеристику.

Если построение не получилось, то его производят заново, меняя в допустимых пределах тот момент, который был взят приблизительно.

На построенной пусковой диаграмме, на линии номинального момента, измеряются отрезки между смежными характеристиками. Это и есть сопротивления отдельных секций пускового реостата в относительных единицах. От относительных единиц переходят к размерным по формуле:

$$R = R^* R_{_H} \,, \tag{35}$$

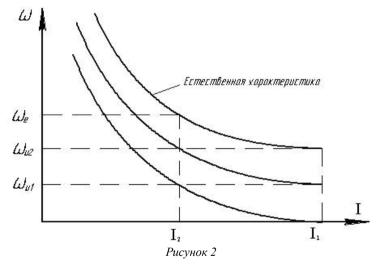
При расчете пускового реостата для асинхронного двигателя следует учитывать, что механические и скоростные характеристики двигателя прямолинейны и момент пропорционален току ротора при условии:

$$M^*_{I} \leq 0.75 M^*_{\kappa},$$
 (36)

Расчет пусковых реостатов для двигателя постоянного тока последовательного возбуждения производится в следующей последовательности:

- 1. По универсальным характеристикам строится естественная скоростная характеристика и на оси абсцисс отмечаются значения пускового тока I_1 и тока переключения I_2 (рисунок 2):
 - 2. Определяется общее сопротивление пускового реостата

$$R_I = (I - \omega_u / \omega_{eI}) * (U_H / I_I - r_o)$$


$$\tag{37}$$

 Γ де $\omega_u = 0$ (в момент пуска) и r_{∂} определяется из (15)

3. Определяется значение ω_{u1} при $I=I_2$ по формуле:

$$\omega_u/\omega_{e2} = (U_H - I_2(r_{\partial^+} R_I)/(U_H - I_2 r_{\partial})$$
(38)

- 4. По формуле (37), подставив $\omega_{\rm u=}$ $\omega_{\rm u1}$ определяется сопротивление пускового реостата R_2 (после отключения первой секции)
- 5. По формуле (38) определяется ω_{u2} и т. д., вплоть до выхода на естественную характеристику. Если построение не получилось, то его производят заново, меняя в небольших пределах то значение тока, которое было взято приблизительно.

Третье задание - расчет мощности двигателей для механизмов, работающих в длительном и повторно-кратковременном режимах.

Нагрузочные диаграммы представлены в виде зависимости мощности двигателя, тока или вращающего момента от времени.

 вивалентным по потерям мощности, участком с постоянной величиной $I,\,M$ или P.

Для трапеции с начальным током I_1 и конечным I_2 :

$$I_{_{\mathcal{H}B}} = \sqrt{\frac{I_1^2 + I_1I_2 + I_2^2}{3}} \,, \tag{39}$$

Для треугольника с начальным током I_2 и конечным, равным нулю:

$$I_{_{9KB}} = \frac{I_2}{\sqrt{3}},\tag{40}$$

После сделанных пересчетов можно использовать одну из формул эквивалентных величин.

Эквивалентный ток:

$$I_{_{\mathcal{JKB}}} = \sqrt{\frac{I_1^2 t_1 + \dots + I_n^2 t_n}{t_1 + \dots + t_n}},$$
(41)

где $I_1...I_n$ - токи на отдельных участках нагрузочной диаграммы , A; $t_1...t_n$ время действия этих токов по отдельным участкам нагрузочной диаграммы включая и паузы в работе двигателя,

Методом эквивалентного момента и эквивалентной мощности можно пользоваться при условии постоянства магнитного потока машины, а расчетные формулы выглядят так:

Эквивалентный момент:

$$M_{_{9K6}} = \sqrt{\frac{M_1^2 t_1 + \dots + M_n^2 t_n}{t_1 + \dots + t_n}},$$
(42)

где $M_1...M_n$ - моменты на отдельных участках нагрузочной диаграммы, Нм. Эквивалентная мощность:

$$P_{_{\mathcal{SKB}}} = \sqrt{\frac{P_1^2 t_1 + \dots + P_n^2 t_n}{t_1 + \dots + t_n}} \,, \tag{43}$$

где $P_1...P_n$ - мощности на отдельных участках нагрузочной диаграммы, кВт.

Четвертое и пятое задания теоретические, предполагают глубокий анализ литературных источников по предлагаемой тематике.

Шестое задание - расчётное задание произвольной тематики.

Выбор условий для всех шести заданий осуществляется согласно варианта студента в соответствии с таблицей 4, вариант соответствует порядковому номеру студента в списке группы. Всего предусмотрено 60 возможных вариантов. В случае одновременного обучения на одном курсе двух групп одного направления, распределение вариантов заданий осуществляется следующим образом: с 1 по 30 варианты распределяются среди студентов одной из групп, остальные с 31 по 60 среди второй группы. Либо по согласованию с ведущим преподавателем данной дисциплины.

Таблица 4

			Порядковый номе	р условия задания	1	
Варианты	Задание 1	Задание 2	Задание 3	Задание 4	Задание 5	Задание 6
1	1	1	1	1	1	1
2	2	2	2	2	2	2
3	3	3	3	3	3	3
5	5	5	5	5	<u>4</u> 5	5
6	6	6	6	6	6	6
7	7	7	7	7	7	7
8	8	8	8	8	8	8
9	9	9	9	9	9	9
10	10	10	10	10	10	10
11	1	1	1	2	2	2
12	2	2	2	3	3	3
13	3	3	3	4	4	4
14	4	4	4	5	5	5
15	5	5	5	6	6	6
16	6	6	6	7	7	7
17	7	7	7	8	8	8
18	8	8	8	9	9	9
19	9	9	9	10	10	10
20	10	10	10	1	1	1
21	1	1	2	2	2	2
22	2	2	3	3	3	3
23	3	3	4	4	4	4
24	4	4	5	5	5	5
25	5	5	6	6	6	6
26	6	6	7	7	7	7
27	7	7	8	8	8	8
28	8	8	9	9	9	9
29	9	9	10	10	10	10
30	1	1	1	1 2	2	2
31 32	3	3	3	3	3 4	3 4
	4	4	4	4		5
33 34	5	5	5	5	5 6	6
35	6	6	6	6	7	7
36	7	7	7	7	8	8
37	8	8	8	8	9	9
38	9	9	9	9	10	10
39	10	10	10	10	1	1
40	1	2	2	2	2	2
41	2	3	3	3	3	3
42	3	4	4	4	4	4
43	4	5	5	5	5	5
44	5	6	6	6	6	6
45	6	7	7	7	7	7
46	7	8	8	8	8	8
47	8	9	9	9	9	9
48	9	10	10	10	10	10
49	10	1	1	1	1	1
50	1	1	1	1	1	2
51	2	2	2	2	2	3
52	3	3	3	3	3	4
53	4	4	4	4	4	5
54	5	5	5	5	5	6
55	6	6	6	6	6	7
56	7	7	7	7	7	8
57	8	8	8	8	8	9
58 59	9	9	9	9	9 10	10

2. СПИСОК УСЛОВИЙ ДЛЯ ЗАДАНИЙ

2.1. Условия для задания №1

1. Для двигателя постоянного тока независимого возбуждения, имеющего $\omega_{\scriptscriptstyle H}=78,53~{\rm pag/c}$, $I_{\scriptscriptstyle H}=3,0~{\rm A}$, $U_{\scriptscriptstyle U}=220~{\rm B}$, $\eta_{\scriptscriptstyle H}=0,62$, определить добавочное сопротивление цепи якоря, при котором двигатель будет вращаться с установившейся скоростью $\omega_{\scriptscriptstyle C}=63~{\rm pag/c}$ при моменте статического сопротивления $M_{\scriptscriptstyle C}*=0,8$.

Построить естественную и искусственную механические характеристики $\omega^* = f(M^*)$.

- 2. Построить естественную характеристику $\omega = f(M)$ для асинхронного двигателя с фазным ротором, имеющего данные: $P_{\scriptscriptstyle H} = 30$ кВт, $n_{\scriptscriptstyle H} = 935$ мин $^{-1}$, $M_{\scriptscriptstyle KP}/M_{\scriptscriptstyle H} = 2.5$.
- 3. С помощью универсальных характеристик построить естественную механическую и скоростную характеристики двигателя постоянного тока последовательного возбуждения, имеющего данные: $P_{\scriptscriptstyle H} = 18~{\rm kBr},~n_{\scriptscriptstyle H} = 960~{\rm muh}^{-1},~I_{\scriptscriptstyle H} = 98{\rm A}.$
- 4. Построить естественную механическую характеристику $\omega=f(M)$ для асинхронного двигателя с фазным ротором , имеющего данные: $P_{_H}$ = 15 кВт, $n_{_H}$ = 710 мин $^{-1}$, $M_{_{\rm KP}}/M_{_{\rm H}}$ = 3.
- 5. Построить естественную и искусственную механические характеристики двигателя постоянного тока параллельного возбуждения, имеющего следующие данные: P_n = 12,0 кВт, U_n = 220 В, ω_n = 142 рад/с, η_n = 84%.

Добавочное сопротивление в цепи якоря для получения искусственной характеристики $R_{\partial} = 0,6$ Ом.

6. Построить естественную и искусственную скоростные характеристики двигателя постоянного тока последовательного возбуждения, имеющего следующие данные: $P_{\scriptscriptstyle H}=17~{\rm kBr},\ U_{\scriptscriptstyle H}=220~{\rm B},\ \omega_{\scriptscriptstyle H}=64,4~{\rm pag/c},\ \eta_{\scriptscriptstyle H}=0,8,\ R_{\scriptscriptstyle O}=0,2~{\rm Om}.$

Универсальная характеристика задана таблицей:

I _s *	0,4	0,8	1,6	2	2,4
ω*	1,6	1,1	0,85	0,70	0,65

Построение произвести в размерных единицах.

7. Для двигателя постоянного тока параллельного возбуждения определить, с какой угловой скоростью будет работать двигатель при номинальном токе якоря, если $R_{\partial o \delta} = 1,5$ Ом, $I_{\scriptscriptstyle H} = 19$ A, $U_{\scriptscriptstyle H} = 440$ B, $\omega_{\scriptscriptstyle H} = 91,6$ рад/с, $r_{\scriptscriptstyle O} = 1,97$.

Построить естественную и искусственную характеристики ω = f(I).

8. Определить какой момент M_c * разовьет двигатель параллельного возбуждения, если при добавочном сопротивлении якорной цепи $R_o=1,2$ Ом он работает со скоростью $\omega_c=68$ рад/с. Двигатель имеет следующие данные: $P_u=15$ кВт, $U_u=440$ В, $\omega_u=74,3$ рад/с, $\eta_u=85\%$.

Результат получить в относительной форме и построить естественную и искусственную характеристики $\omega^* = f(M)^*$.

- 9. Построить естественную и искусственную механические характеристики $\omega=f(M)$ для асинхронного двигателя, имеющего данные: $P_{\scriptscriptstyle H}=11$ кВт, $I_{\scriptscriptstyle H}=41$ А, $E_{\scriptscriptstyle 2H}=179$ В, $\omega_{\scriptscriptstyle H}=95,3$ рад/с, $M_{\scriptscriptstyle KP}/M_{\scriptscriptstyle H}=2,5$. Добавочное сопротивление в цепи ротора для получения искусственной характеристики $R_{\scriptscriptstyle \partial}=0,1$ Ом.
- 10. Пользуясь универсальными характеристиками двигателя последовательного возбуждения построить естественную и искусственную скоростные характеристики $\omega = f(I)$.

Данные двигателя: $P_{\scriptscriptstyle H}$ = 16 кВт, $I_{\scriptscriptstyle H}$ = 89 A, $\omega_{\scriptscriptstyle H}$ = 68 рад/с, $\eta_{\scriptscriptstyle H}$ = 81%, $U_{\scriptscriptstyle H}$ = 220В.

Добавочное сопротивление в цепи якоря R_{θ} = 0,4 Ом. Построение произвести в размерных единицах.

2.2. Условия для задания №2

- 1. Для асинхронного двигателя, имеющего P_u = 7,5 кВт, ω_u = 97,9 рад/с, E_{2H} = 242 В, I_{2u} = 20,7 А, рассчитать аналитически сопротивление отдельных секций пускового реостата и полное сопротивление роторной цепи на отдельных ступенях пуска, считая M^*_2 =1,2
- 2. Для двигателя постоянного тока независимого возбуждения рассчитать графически сопротивления отдельных секций пускового трехступенчатого реостата, если $P_{\scriptscriptstyle H}=13~{\rm kBr},\ U_{\scriptscriptstyle H}=220~{\rm B},\ \omega_{\scriptscriptstyle H}=221,98~{\rm pag/c},\ M_{\scriptscriptstyle I}*=2,$ $\eta_{\scriptscriptstyle H}=0,86.$
- 3. Асинхронный двигатель с фазным ротором имеет следующие данные: $P_{\scriptscriptstyle H}=45~{\rm kBr},~E_{\scriptscriptstyle 2\scriptscriptstyle H}=181~{\rm B},~I_{\scriptscriptstyle 2\scriptscriptstyle H}=146~{\rm A},~\omega_{\scriptscriptstyle H}=60,31~{\rm pag/c}.$ Для данного двигателя рассчитать аналитически сопротивления отдельных секций пускового реостата и полные сопротивления роторной цепи на отдельных ступенях пуска, если ток переключения $I_2*=1,1$
- 4. Двигатель постоянного тока параллельного возбуждения имеет следующие данные: P_n = 17 кВт, ω_n = 124 рад/с, U_n = 440 В, η_n = 86%, ток переключения I_2 * = 1,15.

Рассчитать, графически сопротивления отдельных секций пускового трехступенчатого реостата.

- 5. Асинхронный двигатель имеет следующие данные: $P_{\rm H}=11~{\rm kBT}$, $E_{2\rm H}=185~{\rm B}$, $I_{2\rm H}=39~{\rm A}$, $\omega_{\rm H}=74~{\rm pag/c}$. Для данного двигателя рассчитать аналитически сопротивления отдельных секций пускового трехступенчатого реостата и полное сопротивление роторной цепи на отдельных ступенях пуска, если $M_I^*=1,5$.
- 6. Двигатель постоянного тока параллельного возбуждения имеет следующие данные: $P_{\scriptscriptstyle H}=12~{\rm kBr},\ U_{\scriptscriptstyle H}=220~{\rm B},\ \omega_{\scriptscriptstyle H}=142~{\rm pag/c},\ \eta_{\scriptscriptstyle H}=84\%$. Рассчитать аналитически сопротивления отдельных секций пускового реостата

и полное сопротивление якорной цепи, если $M_I^* = 2,2;$ число пусковых ступеней – как можно меньше.

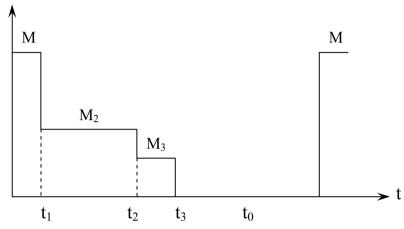
7. Определить число пусковых ступеней - **m** и величину сопротивления каждой ступени двигателя постоянного тока последовательного возбуждения при условии, что I_1 *= 2,5, I_2 = 250 A. Данные двигателя: P_u = 33 кВт, U_u = 220B, η_u = 0,85.

Естественная характеристика двигателя задана таблицей:

I, A		70	105	140	175	263	350	525
ω, pa	ı/c	115	86	74	66	53	49	40

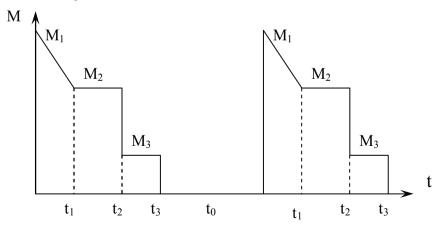
8. Определить число пусковых ступеней m и величину сопротивления каждой ступени двигателя постоянного тока последовательного возбуждения при условии, что $I_1*=2$, $I_2*=1,35$. Данные двигателя: $P_n=16$ кВт, $U_n=220$ В, $\eta_n=0,81$, $I_n=89$ A, $\omega_n=68$ рад/с.

Данные универсальной характеристики:

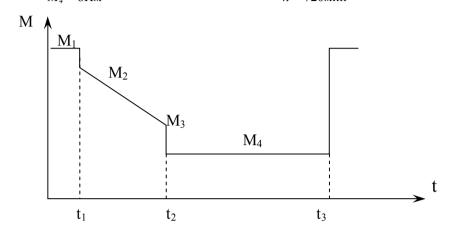

I	I*	0,4	0,6	1	1,4	1,8	2	2,4
	Ω^*	1,6	1,2	1	0,85	0,75	0,7	0,65

- 9. Рассчитать аналитически сопротивления отдельных секций пускового реостата для двигателя постоянного тока параллельного возбуждения, имеющего данные: P_n = 32 кВт, U_n = 440 В, ω_n = 142 рад/с , η_n = 88%, число пусковых ступеней m = 3, ток переключения I_2 *=1,2
- 10. Для асинхронного двигателя с фазным ротором, имеющего данные: $P_{\scriptscriptstyle H} = 30~{\rm kBr},~E_{\scriptscriptstyle 2 \scriptscriptstyle H} = 235~{\rm B},~I_{\scriptscriptstyle 2 \scriptscriptstyle H} = 73~{\rm A},~\omega_{\scriptscriptstyle H} = 98~{\rm pag/c},$ рассчитать аналитически сопротивления отдельных секций пускового реостата и полное сопротивление роторной цепи на отдельных ступенях пуска. Пуск форсированный при $M_{\scriptscriptstyle L} * = 1,8$.

2.3. Условия для задания № 3

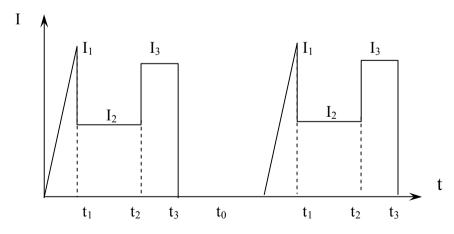

1. Определить мощность двигателя, работающего по графику:

```
M_1 = 60 \text{Hm}
                                                           t_I = 5c.
M_2 = 35 \text{Hm}
                                                           t_2 = 18c.
M_3 = 25 \text{Hm}
                                                           t_3 = 15c.
                                                          t_0 = 33с.
n = 730 мин <sup>-1</sup>
```



2. Определить мощность двигателя, работающего по графику:

	··, p
$M_I = 90 \text{H}_{\text{M}}$	$t_{I} = 10c$
$M_2 = 46 \text{Hm}$	$t_2 = 16c$
$M_3 = 20$ HM	$t_3 = 8c$
$\omega = 63$ рад/с	$t_0 = 130c$



$$M_1$$
= 40Hм t_1 = 10c M_2 = 38Hм t_2 = 30c M_3 = 17 Hм t_3 = 46c M_4 = 8Hм n = 720мин $^{-1}$

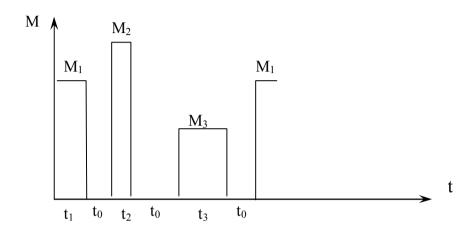
4. Определить мощность двигателя, работающего по графику:

$I_{I} = 50A$	$t_I = 4c$
$I_2 = 32 \text{ A}$	$t_2 = 12c$
$I_3 = 46 \text{ A}$	$t_3 = 5c$,
$U_{H} = 220 B$	to = 36c

$$M_1 = 140 \text{HM}$$

 $M_2 = 210 \text{HM}$
 $M_3 = 95 \text{HM}$

$$t_{I} = 14c$$


$$t_{0} = 2c$$

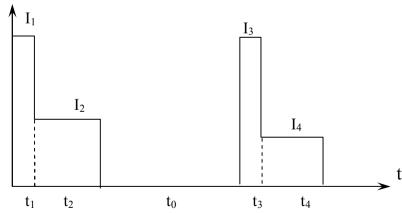
$$t_{2} = 3c$$

$$t_0 = 19c$$
$$t_3 = 23c$$

$$t_0 = 12c$$

6. Определить мощность двигателя, работающего по графику:

$I_{I} = 35A$	
$I_2 = 17A$	


$$t_I = 3c$$
$$t_2 = 20c$$

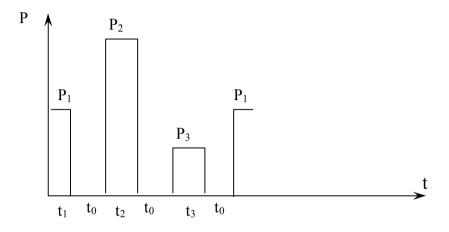
$$t_{4}$$
=15c
 U_{H} = 220 B

$$I_3 = 35 \text{ A}$$

 $I_4 = 13 \text{ A}$

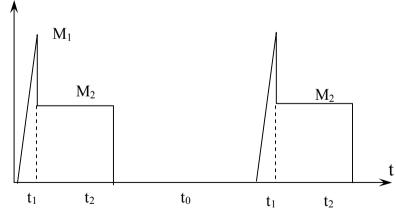
$$t_0 = 37c$$
$$t_3 = 2c$$

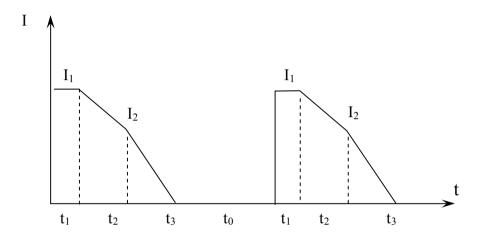
I


 $P_1 = 21 \text{ кВт}$ $P_2 = 39 \text{ кВт}$ t_{I} = 16c

 $t_3 = 15c$

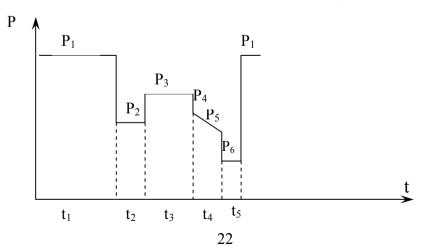
 $P_3 = 7 \text{ kBT}$




8. Определить мощность двигателя, работающего по графику:

- $M_l = 160 \text{ Hm}$
- $t_I = 5c$
- M_2 =100 Hм n = 720 мин ⁻¹
- $t_2 = 40c$ $t_0 = 100c$

M A



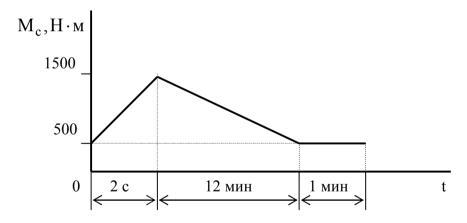
$$I_1 = 80A$$
 $t_1 = 9c$ $t_2 = 35A$ $t_2 = 12c$ $t_3 = 6c$ $t_0 = 150c$

10. Определить мощность двигателя, работающего по графику:

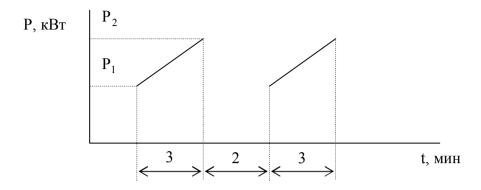
$P_I = 16 \text{kBt}$	$P_4 = 10 \kappa B_T$	$t_{I} = 10c$
$P_2 = 8 \text{ kBt}$	$P_5 = 9 \text{ kBT}$	$t_2 = 6c$
$P_3 = 12\kappa B_T$	$P_6 = 6\kappa B_T$	$t_3 = 8c$
		$t_4 = 5c$
		$t_5=3c$

2.4. Условия для задания № 4

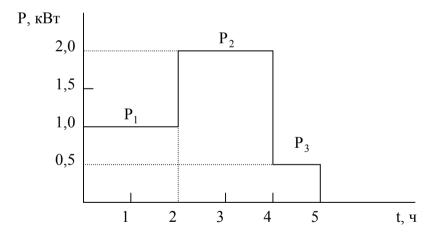
- 1. Регулирование частоты вращения двигателя независимого возбуждения в системе Г-Д (привести схему).
- 2. Регулирование частоты вращения двигателя постоянного тока независимого возбуждения в системе УВ-Д.
- 3. Регулирование частоты вращения электроприводов. Общие понятия о регулировании частоты вращения. Достоинства и недостатки систем Γ -Д и УВ-Д.
- 4. Регулирование частоты вращения двигателей постоянного тока путем изменения сопротивления в якорной цепи.
- Регулирование частоты вращения двигателей постоянного тока посредством изменения потока возбуждения.
- 6. Регулирование частоты вращения асинхронных двигателей путем изменения числа пар полюсов.
- 7. Способы регулирование частоты вращения двигателя постоянного тока последовательного возбуждения.
- 8. Регулирование частоты вращения асинхронного двигателя посредством изменения сопротивления роторной цепи.
- 9. Регулирование частоты вращения асинхронных двигателей путем изменения частоты питающего напряжения.
- 10. Регулирование частоты вращения двигателя постоянного тока изменением подводимого к якорю напряжения.


2.5. Условия для задания № 5

- 1. Начертить возможные узлы схем включения реле времени при управлении электроприводом в функции времени. Пояснить работу схем.
- 2. Начертить узлы схем силовой электрической цепи для динамического торможения и торможения противовключением двигателей постоянного и переменного тока. Пояснить схемы.
- 3. Начертить схему прямого пуска синхронного двигателя низкого напряжения. Пояснить работу схемы.
- 4. Начертить схему управления двигателем постоянного тока параллельного возбуждения с динамическим торможением. Пояснить работу схемы.
- 5. Начертить узлы схем силовой цепи двигателей, предусмотрев в них максимальную токовую защиту; защиту от перегрузки. Пояснить схемы.
- 6. Начертить узлы схем, включающие элементы защиты двигателей от самозапуска; защиты при обрыве цепи возбуждения двигателей постоянного тока и синхронного.


- 7. Начертить схему управления асинхронным двигателем (или двигателем постоянного тока) в функции тока. Описать работу схемы.
- 8. Начертить реверсивную схему управления двигателем постоянного тока последовательного возбуждения с торможением противовключением. Пояснить работу схемы.
- 9. Начертить схему управления двигателем постоянного тока с использованием управляющего командоконтроллера. Пояснить работу схемы.
- 10. Начертить схему управления двухскоростным асинхронным двигателем. Пояснить работу схемы.

2.6. Условия для задания № 6


- 1. Рассчитать и выбрать автоматический выключатель с электромагнитным расцепителем и магнитный пускатель для двигателя 4A90L6У3 ($P_{\rm H}$ = 1,5кBт; $\eta_{\rm H}$ = 75%; $\cos\phi_{\rm H}$ = 0,74; $I_{\rm nvck}/I_{\rm H}$ = 5,5).
- 2. Рассчитать момент двигателя, необходимый для привода навозоуборочного транспортера кругового движения, нагрузочная диаграмма которого дана на валу рабочей машины. $\eta_{\text{p}}=0.95$; $i_{\text{p}}=70$.

3. Рассчитать мощность двигателя центробежного насоса водоснабжающей установки, нагрузочная диаграмма которого дана: $P_1=1,5\kappa B_T$; $P_2=2,0\kappa B_T$.

4. Рассчитать мощность двигателя рабочей машины, нагрузочная диаграмма которой приведена. Рабочая скорость агрегата 900 об/мин. $P_1=1 \kappa B \tau$; $P_2=2 \kappa B \tau$; $P_3=0.5 \kappa B \tau$.

- 5. Асинхронный двигатель с номинальным напряжением 380/660B пускается в работу при соединении обмоток в "звезду" и напряжении сети 380B. Запустится ли агрегат в работу, если $M_{\text{трог}}=0,75M_{\text{H}}$, а $m_{\text{n}\Lambda}=2,0$?
- 6. Асинхронный двигатель транспортера при пуске преодолевает момент трогания, равный $1.3 M_{_{\rm H}}$. Запустится ли двигатель в работу при понижении напряжения сети на 10% от номинального, если $m_{_{\rm H}}=2.0$?

- 7. Асинхронный двигатель 4A132M4Y3 пускается в работу с моментом трогания, равным номинальному. Запустится ли агрегат, если в сети напряжение понижается на 30%, а $m_{\pi} = 2,0$?
- 8. Асинхронный двигатель ($P_{\rm H}$ =3,0кВт; $n_0=1000$ об/мин) центробежного вентилятора вышел из строя. Какой мощности двигатель нужно установить, если скорость нового двигателя будет больше на 25% ?
- 9. Электрический двигатель ($P_{\rm H}$ =3,0кBт; n_0 = 1000 об/мин) ленточного транспортера загружен до номинального момента. Необходимо определить номинальную мощность нового двигателя при повышении скорости на 35%.
- 10. Рассчитать и выбрать мощность двигателя для скребкового транспортера, работающего продолжительно с постоянной нагрузкой, если скорость цепи $V_{\text{тр}}=0,2_{\text{M}}/c$; необходимое усилие для перемещения цепи F=5000; $\eta_{\text{peg}}=0,9$; $i_{\text{p}}=10$. Пускается на холостом ходу.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Цейтлин Л.С. Электропривод, электрооборудование и основы управления. М.: Высшая школа, 1985.
- 2.Москаленко В.В. Электрический привод. М.: Высшая школа, 1984.
 - 3. Васин В.М. Электрический привод. М.: Высшая школа, 1984.
 - 4. Хализев Г.П. Электрический привод. М.: Высшая школа, 1977.

СОДЕРЖАНИЕ

1. ОБЩИЕ УКАЗАНИЯ 4 2. СПИСОК УСЛОВИЙ ДЛЯ ЗАДАНИЙ 15 2.1. Условия для задания №1 15 2.2. Условия для задания №2 16 2.3. Условия для задания №3 18 2.4. Условия для задания №4 23 2.5. Условия для задания №5 23 2.6. Условия для задания №6 24 БИБЛИОГРАФИЧЕСКИЙ СПИСОК 26	ВВЕДЕНИЕ	
2. СПИСОК УСЛОВИЙ ДЛЯ ЗАДАНИЙ 15 2.1. Условия для задания №1 15 2.2. Условия для задания №2 16 2.3. Условия для задания №3 18 2.4. Условия для задания №4 23 2.5. Условия для задания №5 23 2.6. Условия для задания №6 24		
2.2. Условия для задания №2. 16 2.3. Условия для задания №3. 18 2.4. Условия для задания №4. 23 2.5. Условия для задания №5. 23 2.6. Условия для задания №6. 24		
2.3. Условия для задания №3 18 2.4. Условия для задания №4 23 2.5. Условия для задания №5 23 2.6. Условия для задания №6 24	2.1. Условия для задания №1	15
2.4. Условия для задания №4. 23 2.5. Условия для задания №5. 23 2.6. Условия для задания №6. 24	2.2. Условия для задания №2	16
2.5. Условия для задания №5. 23 2.6. Условия для задания №6. 24	2.3. Условия для задания №3	18
2.6. Условия для задания №6	2.4. Условия для задания №4	23
	2.5. Условия для задания №5	23
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	2.6. Условия для задания №6	24
	БИБЛИОГРАФИЧЕСКИЙ СПИСОК	26

Составители:

Кузнецов Андрей Юрьевич Основич Виктор Леонидович Никонов Сергей Александрович Болотов Денис Сергеевич

АВТОМАТИЗИРОВАННЫЙ ЭЛЕКТРОПРИВОД

Методические указания и задания к расчётно-графической работе для студентов заочной формы обучения

Редактор М.Г Девищенко Компьютерная верстка В. Н. Зенина

Подписано к печати 2018 г. Объем 1,8 уч.-изд.л., усл. печ. л. 1.8 Формат $60 \times 84^{1/16}$ Тираж 100 экз. Изд. № ___ Заказ № ___

Отпечатано в Издательском центре НГАУ «Золотой колос» 630039, Новосибирск, ул. Добролюбова, 160, кааб. 106. Тел./факс (383) 267-09-10. E-mail: 2134539@mail.ru