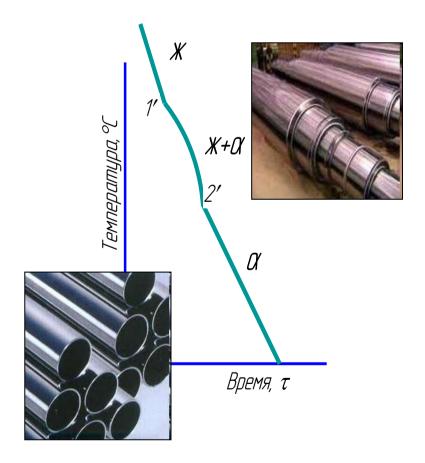
ФГБОУ ВО Новосибирский ГАУ

ИНЖЕНЕРНЫЙ ИНСТИТУТ


Кафедра надежности и ремонта машин

МАТЕРИАЛОВЕДЕНИЕ И ТЕХНОЛОГИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ

Методические указания

для самостоятельной и контрольной работы

(для направления подготовки 44.003.04 Профессиональное обучение)

НОВОСИБИРСК 2023

Кафедра надежности и ремонта машин

УДК 621.7.001.5 ББК 34.2я73

Составители: Е.В. Агафонова, ст. преп.

Т.В. Возженникова, ст. преп.

Реиензент И.В. Тихонкин, канд. техн. наук. дои.

Материаловедение и технология конструкционных материалов: метод. указания для самостоятельной и контрольной работы /Новосиб. гос. аграр. ун-т. Инженер. ин-т; сост: Е.В. Агафонова, Т.В. Возженникова – Новосибирск, 2023 – 70c

В методических указаниях по дисциплине «Материаловедение и технология конструкционных материалов» приведены основные темы разделов, вопросы для самоконтроля по каждой теме, рекомендации и задания для выполнения и оформления контрольной работы, перечень рекомендуемой литературы, экзаменационные вопросы, в приложениях приведены рисунки и формулы для решения задач, а также пример оформления контрольной работы.

Предназначены для студентов Инженерного института обучающихся по направлению подготовки Профессиональное обучение (по отраслям).

Рекомендованы к изданию учебно-методическим советом Инженерного института НГАУ (протокол № от

- © Новосибирский государственный аграрный университет, 2023
 - © Инженерный институт, 2023

ВВЕДЕНИЕ

Совершенствование производства, выпуск современных разнообразных машиностроительных конструкций, специальных приборов, машин и различной аппаратуры невозможны без дальнейшего развития производства и изыскания новых материалов, как металлических, так и неметаллических.

Материаловедение и технология конструкционных материалов является одной из первых инженерных дисциплин, которую осваивают студенты по направлению подготовки «Профессиональное обучение (по отраслям)», основы, которой широко используются при дальнейшем изучении инженерных дисциплин, а также в практической деятельности педагога инженерных дисциплин.

Прогресс в области инженерных дисциплин, а также развитии новых технологий в области машиностроения тесно связан с созданием и освоением новых, наиболее экономичных материалов, обладающих самыми разнообразными механическими и физико-химическими свойствами. Свойства материала определяются его внутренним строением, которое, в свою очередь, зависит от состава и характера предварительной обработки. В результате изучения дисциплины «Материаловедение и технология конструкционных материалов» студент должен:

знать:

- строение и свойства материалов; сущность явлений, происходящих в материалах в условиях эксплуатации изделий; современные методы формообразования и обработки заготовок для изготовления деталей заданной формы и качества, их технологические особенности; основные закономерности формирования состава, структуры и свойств современных высококачественных конструкционных материалов и изделий сельскохозяйственного назначения из них, технологические особенности процессов и оборудования для получения и обработки заготовок основы технического нормирования, научной организации труда на производстве;

уметь:

- оценивать и прогнозировать состояние материалов и причины отказов деталей под воздействием на них различных эксплуатационных факторов; выбирать рациональный способ получения заготовок, исходя из заданных эксплуатационных свойств; выполнять и демонстрировать технологические приемы по обработке, контролю, элементам обучения в области основных производственных процессов в области материаловедения и технологии конструкционных материалов; владеть:

- техникой владения и некоторыми приемами выполнения технологических задач, предусмотренными программой дисциплины.

І МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ИЗУЧЕНИЮ РАЗДЕЛОВ ДИСЦИПЛИНЫ «МАТЕРИАЛОВЕДЕНИЕ И ТЕХНОЛОГИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ»

ОСНОВНЫЕ ТЕМЫ РАЗДЕЛА «МАТЕРИАЛОВЕДЕНИЕ»

1. Механические, технологические и физико-химические свойства материалов.

Свойства металлов и сплавов. Физико-химические свойства материалов. Механические свойства и их характеристики (твердость, прочность, пластичность). Основные методы определения механических свойств металлов. Технологические и эксплуатационные свойства.

Вопросы для самоконтроля

- 1. Назовите физико-механические свойства материалов.
- 2. Перечислите механические свойства материалов, характеризующие их прочность. Приведите расчетные формулы.
 - 3. Приведите расчетные формулы для определения пластичности.
 - 4. Что такое твердость? Единицы измерения твердости.
 - 5. Какие методы определения твердости существуют?
 - 6. Назначение методов Бринелля, Роквелла, Виккерса.

2. Формирование структуры металлов при кристаллизации. Макро- и микродефекты.

Основы теории кристаллизации металлических материалов. Влияние внешних факторов на структуру. Условия и механизм кристаллизации. Строение металлического слитка. Полиморфные превращения в металлах. Полиморфизм железа. Деформация и разрушение металлических материалов. Наклеп и рекристаллизация. Холодная деформация и ее влияние на структуру и свойства металла. Возврат и рекристаллизация. Горячая деформация и ее влияние на структуру и свойства металлов. Упругая и пластическая деформация; разрушение. Зависимость прочности от наличия дефектов в металле. Влияние макро- и микродефектов строения на процессы деформации.

Вопросы для самоконтроля

- 1. Расскажите, как происходит процесс первичной кристаллизации металлов.
- 2. Определите, от чего зависит величина зерна в металлах и сплавах.
- 3. Поясните полиморфные превращения в металлах. Полиморфизм железа.
- 3. Как происходит деформация и разрушение металлических материалов?
- 5. Объясните зависимость прочности от наличия дефектов в металле.
- 6. Объясните, что такое наклеп и рекристаллизация.
- 7. Расскажите, как влияет горячая и холодная пластическая деформация на структуру и свойства металла в готовых изделиях.
 - 8. Что относится к макро- и микродефектам?

3. Теория сплавов. Диаграммы двухкомпонентных систем (сплавов).

Свойства и строение металлов. Кристаллические решетки. Несовершенства реальных кристаллов. Основы теории образования сплавов. Типы сплавов и их структурные составляющие. Типы диаграмм состояния сплавов и их взаимосвязь со структурой и свойствами сплавов. Диаграмма состояния сплавов железоцементит, ее структурные составляющие.

- 1. Перечислите дефекты кристаллического строения материалов.
- 2. Дайте определение понятиям: сплав, компоненты, фаза, структурные составляющие.
 - 3. Назовите типы диаграмм состояния двухкомпонентных сплавов.
 - 4. Дайте определения линиям ликвидус и солидус на диаграммах?
- 5. Используя диаграмму состояния системы «железо-углерод», укажите температуру образования двухфазных структурных составляющих и содержание в них углерода.
- 6. Перечислите однофазные структурные составляющие железоуглеродистых сплавов. Пользуясь диаграммой, укажите предельные концентрации в них углерода.
- 7. Какую кристаллическую решётку имеет α-железо? Укажите температурный интервал существования α-железа.

4. Оборудование и методика структурных исследований металлов и сплавов.

Оборудование для приготовления макро-и микрошлифов. Устройство и принцип работы металлографических микроскопов. Методика проведения макроструктурного анализа Методика выявления микроструктуры металлов и сплавов.

Вопросы для самоконтроля

- 1. Как приготовить микрошлиф и макрошлиф для исследований?
- 2. Как определяется увеличение на оптическом металлографическом микро-скопе?
 - 3. Какие неметаллические включения типичны для стали?
- 4. Перечислите зоны, имеющиеся в структуре типичного металлического слитка. Чем объяснить изменение размера зерен в различных зонах металлического слитка?
 - 5. Как влияет волокнистое строение металла на его свойства?
 - 6. Перечислите виды изломов металлов. Укажите отличия между ними.

5. Углеродистые стали и чугуны.

Железоуглеродистые сплавы и их типы. Влияние углерода, нормальных примесей, способа производства на свойства стали. Классификация по составу качеству, назначению. Маркировка инструментальных и конструкционных сталей и сплавов. Структурные составляющие сплавов в равновесном состоянии. Область применения углеродистых сталей и чугунов. Серые, ковкие и высокопрочные чугуны; влияние формы графитовых включений на их свойства.

- 1. Приведите классификацию сталей по содержанию углерода. Укажите структуру сталей, содержащих различное количество углерода.
- 2. Как меняются механические свойства стали с увеличением содержания в ней углерода?
- 3. Укажите максимальную концентрацию углерода в конструкционных и инструментальных сталях.
- 4. Объясните, почему стали обыкновенного качества нельзя использовать для ответственных деталей

- 5. Перечислите виды чугунов, дайте их определение.
- 6. Объясните принцип маркировки чугунов.
- 7. Расскажите, какую информацию содержат следующие марки стали: Ст3сп, 08, У8, У12A.
- 8. Расскажите, какую информацию содержат марки следующих чугунов: C420, B460, K437-12.

6. Легированные конструкционные и инструментальные стали.

Классификация и маркировка по составу качеству, назначению легированных конструкционных и инструментальных сталей. Влияние легирующих элементов на свойства сталей. Жаропрочные, деление их на низко, средне и высоколегированные, классификация в зависимости от назначения. Жаростойкие стали. Износостойкие конструкционные стали. Шарикоподшипниковые сплавы, их применение. Стали, применяемые для деталей, эксплуатируемых при воздействии ударных нагрузок. Стали применяемые для изготовления деталей, работающих в условиях трения скольжения. Штамповые стали.

- 1. Укажите влияние хрома, никеля и кремния на свойства стали.
- 2. Поясните распределение легирующих элементов в стали, их влияние на полиморфизм железа.
 - 3. Как маркируются легированные конструкционные и инструментальные стали.
- 4. Определите назначение легирующих элементов в низколегированных и нержавеющих сталях.
 - 5. Назовите марки сплавов с особыми физическими свойствами.
- 6. Как классифицируются легированные стали по назначению и содержанию легирующих элементов?
 - 7. Расскажите, как обеспечить высокую коррозионную стойкость.
- 8. Укажите, какие стали и сплавы используют для работы при повышенных температурах.
- 9. Расскажите, какую информацию содержат следующие марки стали: 10ХСНД, 09Г2, 65С2ВА, 09Х15Н8Ю, 60С2.

7. Фазовые превращения в сплавах железо-углерод при нагреве и охлаждении.

Основы теории термической обработки стали. Критические точки. Диффузия и ее основные закономерности. Превращения при нагревании. Образование аустенита при нагреве и его распад при охлаждении (непрерывном и при изотермических выдержках). Диаграммы распада и его типы (перлитный, бейнитный, мартенситный). Свойства термически обработанной стали.

Вопросы для самоконтроля

- 2. Приведите классификацию видов термической обработки.
- 3. Объясните сущность фазовых превращений в отожженной и закаленной стали при нагреве до аустенитного состояния.
- 4. Расскажите, в чем заключаются превращения в стали при охлаждении. Определите особенности мартенситного превращения.
- 5. Изобразите диаграмму изотермического превращения аустенита для стали У8. Укажите критическую скорость охлаждения.
 - 6. Опишите свойства продуктов перлитного превращения и мартенсита.
 - 7. Укажите назначение основных видов термической обработки.

8. Технология термической обработки.

Практика термической обработки стали. Нагревающие и охлаждающие среды. Закаливаемость и прокаливаемость стали. Обработка холодом Определение температуры и продолжительности нагрева под закалку и отпуск. Виды термической обработки стали, и их влияние на структуру и свойства стали. Способы закалки стали. Теория отпуска закаленных сталей. Отжиг и нормализация. Пороки термически обработанной стали и способы их устранения.

- 1. Изобразите схематический цикл термической обработки и укажите его основные элементы.
- 2. Как определить параметры термической обработки для закалки, отпуска (температуру нагрева, время выдержки, способ охлаждения).
 - 4. Какие структуры получаются после всех видов термической обработки.
 - 5. Механические свойства, получаемые после термической обработки (закал-

ка, нормализация, отпуск, отжиг).

- 6. Дать определение закаливаемости и прокаливаемости.
- 7. Как определяются структуры: сорбита, троостита, мартенсита? В чем разница между ними?

9. Поверхностное упрочнение стальных изделий.

Поверхностное упрочнение стальных изделий. Химико-термическая обработка стали, ее разновидности и цели (цементация, азотирование, цианирование, диффузионная металлизация). Вопросы теории и технологии. Структура стали после химико-термической обработки.

Вопросы для самоконтроля

- 1. Какие основные процессы происходят при химико-термической обработке стали?
- 2. Что понимают под толщиной диффузионного слоя?
- 3. Объясните сущность поверхностной закалки токами высокой частоты.
- 4. Перечислите стали, применяемые для цементации и азотирования.
- 5. Укажите назначение цементации и азотирования.
- 6. Перечислите стали, применяемые для цементации и азотирования.
- 7. Укажите назначение цементации и азотирования.
- 8. Укажите назначение цианирование и нитроцементации.
- 9. Укажите назначение и виды диффузионной металлизации.

10. Цветные металлы и сплавы.

Цветные металлы и сплавы (сплавы на основе меди, алюминия, магния, титана). Преимущества и недостатки в сравнении со сталью. Область применения. Классификация по различным признакам и маркировка. Физическая сущность упрочнения при термической обработке. Подшипниковые материалы. Баббиты на оловянной и свинцовой основах.

- 1. Объясните, что понимается под водородной болезнью меди.
- 2. Расскажите, как влияют легирующие элементы на свойства латуни.
- 3. Укажите, где применяются и как маркируются латуни и бронзы.
- 4. Расскажите, как классифицируются алюминиевые сплавы.

- 5. Объясните, что такое плакированный дюралюмин.
- 6. Укажите, с какой целью модифицируют сплав силумин.
- 7. Перечислите, в каких конструкционных элементах применяются алюминиевые сплавы.
- 8. Укажите, каким требованиям должны удовлетворять антифрикционные сплавы.

11. Неметаллические и порошковые композиционные материалы.

Классификация и область применения. Строение и механические свойства. Аморфные и кристаллические полимеры. Пластмассы. Состав и классификация. Термопластичные и термореактивные пластмассы. Наполненные пластмассы. Пенопласты. Особенности строения и свойства каучуков. Резина, ее состав, свойства и применение. Неметаллические конструкционные материалы: древесные материалы, лакокрасочные, клеевые, прокладочные материалы, состав, свойства, область применения. Порошковые и композиционные материалы: общие сведения о порошковых и композиционных материалах, их получение.

- 1. Укажите, какие вещества в производстве пластмасс применяются в качестве связующих, наполнителей, пластификаторов, красителей.
 - 2. Перечислите, какие детали изготовляют из слоистых пластиков.
 - 3. Укажите состав и свойства резин.
- 4. Объясните, в чем заключается сравнительная оценка свойств лакокрасочных покрытий.
 - 5. Укажите состав клеев. Приведите классификацию клеев.
 - 6. Перечислите основные прокладочные материалы.
- 7. Приведите примеры классификации композиционных материалов (по материаловедческому, конструкционному, технологическому, эксплуатационному принципам).
- 8. Перечислите этапы технологического процесса получения порошковых металлических заготовок.
 - 9. Порядок маркировки порошковых металлических материалов.

ОСНОВНЫЕ ТЕМЫ РАЗДЕЛА «ГОРЯЧАЯ ОБРАБОТКА МЕТАЛЛОВ»

1. Теоретические и технологические основы производства материалов. Металлургия стали и чугуна.

Основы металлургического производства. Современные способы получения металлов. Производство чугуна. Процессы прямого получения железа из руд. Производство стали. Производство цветных металлов.

Вопросы для самоконтроля

- 1. В чем сущность металлургического производства чугуна, стали и цветных металлов?
 - 2. Назовите основные способы производства чугуна
 - 3. Назовите основные способы производства стали.
 - 4. Назовите основные методы получения стали повышенного качества.
 - 5. Назовите особенности производства цветных металлов.

2. Методы формообразования заготовок. Производство заготовок способами литья.

Получение полуфабрикатов и их дальнейшая переработка с помощью теплового и деформационного воздействия для получения отливок, поковок, сварочных узлов. Литейное производство. Свойства литейных сплавов. Общие сведения о принципах и способах получения отливок. Классификация способов литья. Литейные формы и материалы для них. Сборка, заливка литейных форм. Выбивка, очистка и исправление дефектов отливок. Краткие сведения о технологии специальных способов литья. Преимущества и недостатки специальных способов литья.

- 1. Назовите основные факторы, влияющие на выбор способа получения заготовки.
- 2. Назначение и сущность литейного производства. Какими свойствами обладают литейные сплавы?
- 3. Какие формовочные и стержневые смеси используют в литейном производстве? Их характеристики и методы испытания.

- 4. Основные операции технологического процесса изготовления отливки в песчано-глинистых формах.
 - 5. Назовите основные элементы литейной оснастки.
- 6. Схема технологического процесса получения отливок литьем по выплавляемым моделям и оболочковые формы.
- 7. В чем сущность изготовления отливок в кокилях и под давлением? Преимущества данных способов и область их применения.
- 8. Технология получения отливок центробежным литьем, разновидности данного способа и область его применения.
- 9. Виды дефектов при получении отливок и способы их устранения. Как производится контроль отливок?

3. Производство заготовок пластическим деформированием.

Обработка металлов давлением. Физико-химические процессы, связанные с нагревом и последующим деформированием заготовок. Сущность пластической деформации и факторы, влияющие на пластичность металла. Понятие о наклепе, возврате, рекристаллизации. Нагревательные печи и электронагревательные устройства. Получение машиностроительных профилей. Прокатка, волочение, прессование. Свободная ковка, горячая объемная штамповка. Операции формообразования поковок. Проектирование поковок.

- 1. На чем основана обработка металлов давлением?
- 2. Какие факторы влияют на пластичность металлов? В чем различия между упругой и пластической деформациями?
 - 3. Как выбирают температуру начала и конца горячей обработки стали давлением?
- 4. Какие нагревательные устройства применяются перед обработкой металла давлением?
- 5. В чем заключается сущность прокатки металла? Как классифицируются прокатные станы по выпускаемой продукции?
- 6. В чем заключается подготовка металла к волочению? Какую продукцию получают волочением?

- 5. Сущность процесса прессования металла прямым и обратным способами. Какие изделия получают прессованием металлов?
 - 7. Какие существуют операции свободной ковки и в чем их сущность?
 - 8. Какое оборудование и инструмент используют при объемной штамповке?
 - 9. Какие существуют элементарные операции листовой штамповки?

4. Производство неразъемных соединений.

Сварочное производство. Классификация сварки и сварных соединений, оборудование и применяемые материалы. Свариваемость металлов. Применение сварки в заготовительном и ремонтном производствах. Контроль качества сварных соединений. Электродуговая сварка. Оборудование при электродуговой сварке. Материалы сварочной проволоки, электродов. Автоматическая и полуавтоматическая сварка под слоем флюса. Сварка в среде защитных газов. Электрошлаковая сварка. Электроконтактная сварка и ее разновидности. Газовая сварка и резка металлов. Материалы, оборудование и приспособления, применяемые при газовой сварке. Особенности сварки различных материалов и сплавов. Контроль качества сварных соединений. Пайка металлов и сплавов. Сущность процесса и применяемые материалы для пайки. Способы пайки. Контроль качества паяных соединений.

- 1. Приведите классификацию методов сварки, их преимущества и недостатки.
- 2. Назовите различные способы электродуговой сварки.
- 3. В чем сущность способа автоматической и полуавтоматической сварки?
- 4. В чем заключается сущность электрошлаковой сварки? Когда ее применяют?
- 5. Приведите принципиальную схему аргонодуговой сварки и ее преимущества перед другими способами сварки в среде защитных газов.
- 6. В чем сущность газовой сварки, газокислородной резки? Какие материалы можно подвергать газокислородной и электродуговой резке?
- 7. Какие физические явления (процессы) лежат в основе электроннолучевой, плазменной и ультразвуковой сварки?
 - 8. Приведите примеры дефектов сварных швов и способы их контроля.
 - 9. Какие требования предъявляются к припоям и флюсам? Какие применяются

припои и каков их состав?

- 10. Перечислите операции технологии пайки.
- 11. Укажите достоинства и недостатки клеевых соединений. Опишите технологию склеивания и режимы.

ОСНОВНЫЕ ТЕМЫ РАЗДЕЛА

«Качество обработанной поверхности. Поведение материалов в эксплуатации»

1. Обработка металлов резанием. Качество обработанной поверхности.

Резание и его основные элементы. Способы обработки металлов резанием. Качество обработанной поверхности и факторы его характеризующие. Шероховатость обработки поверхности. Выбор материала при подготовке производства.

Вопросы для самоконтроля

- 1. Что понимается под качеством обработанной поверхности?
- 2. От каких факторов зависит расчетная (геометрическая) высота микронеровностей?
- 3. Назовите основные виды обработки резанием.
- 4. Перечислите основные геометрические параметры режущей части токарного резца.
- 5. Назовите элементы режима резания при точении.

2. Конструкции и геометрические параметры режущего инструмента. Материалы для изготовления режущих инструментов.

Конструкции и геометрические параметры инструмента (на примере токарного резца). Материалы для изготовления режущих инструментов. Требования к инструментальным материалам, понятие стойкости. Инструментальные стали. Металлокерамические и безвольфрамовые твердые сплавы, металлокерамические материалы. Применение инструментальных материалов. Материалы и технологии изготовления сборных инструментов.

- 1. Назначение режущего инструмента. Требования к режущему инструменту.
- 2. Составные части и элементы конструкции инструмента.
- 3. Геометрические параметры инструмента, их назначение и определение.
- 4. Группы режущих материалов и целесообразные области их применения.
- 5. Назовите режущие материалы наиболее высокой твердости и теплостойкости.

3. Классификация и основные механизмы металлорелорежущих станков.

Классификация и основные механизмы металлорежущих станков. Кинематические схемы. Приводы и передачи металлорежущих станков. Работы, выполняемые на станках. Точность и шероховатость поверхности.

Вопросы для самоконтроля

- 1. Классификация и нумерация металлорежущих станков.
- 2. Основные механизмы, применяемые в металлорежущих станках.
- 3. Существующие системы приводов станков.
- 4. Какое назначение имеют коробки подач?
- 5. Какое назначение имеют реверсивные механизмы?

ІІ МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ

Выбор заданий контрольной работы. Номер варианта контрольной работы выбирают по последним двум цифрам номера зачетной книжки. В контрольной работе есть задачи и теоретические вопросы, для решения задач в приложении приводятся диаграммы, рисунки, формулы и таблицы.

Оформление контрольной работы. Контрольную работу оформляют на листах бумаги формата А4 с титульным листом в соответствии с приложением 1. Текстовый материал выполняют в печатном виде на листах с рамкай по форме 2а (ГОСТ 2.104-2006). Шрифт ХО Thames или Times New Roman, кегль 14, в таблицах допускается кегль 12, межстрочный интервал — одинарный, абзацный отступ — 1,25, выравнивание по ширине. Схемы, таблицы и рисунки нумеруют сквозной нумерацией. Все страницы также должны быть пронумерованы.

Перед каждым ответом на вопрос необходимо записать текст вопроса с указанием его номера. Ответы на вопросы должны быть краткими по форме, но вместе с тем достаточно полными и точными по содержанию, объемом 1...2 страницы. Все необходимые расчеты производят с точностью до 0,1. Ответы на теоретические вопросы иллюстрируют конкретными примерами. На последней странице контрольной работы указывают перечень использованных литературных источников

(список литературы), оформленный согласно ГОСТ 7.0.100-2018.

Если студенты при составлении ответа на вопрос контрольного задания встретят затруднения и не смогут найти ответ в рекомендуемой литературе, они должны обратиться на кафедру за консультацией.

К выполнению контрольной работы можно приступать только после полной проработки соответствующего программного материала разделов «Материаловедение», «Горячая обработка металлов» и «Качество обработанной поверхности. Поведение материалов в эксплуатации».

ВАРИАНТЫ ЗАДАНИЙ К КОНТРОЛЬНОЙ РАБОТЕ

№ вар	1	2	3	4	5	6	7	8	9	10	11	12
	25	24	23	22	21	20	19	18	17	16	15	14
	26	27	28	29	30	31	32	33	34	35	36	37
	46	47	48	49	50	51	52	53	54	55	56	57
Вопросы	71A	71Б	71B	71Γ	71Д	71E	71Ж	713	71И	71K	72A	72Б
Bo	75	76	77	78	79	80	81	82	83	84	85	86
	175	176	177	178	179	180	181	182	183	184	185	186
	275	276	277	278	279	280	281	282	283	284	285	286

№ вар	13	14	15	16	17	18	19	20	21	22	23	24
	13	12	11	9	8	7	6	5	4	3	2	1
	38	39	40	41	42	43	44	45	26	27	28	29
3PI	58	59	60	61	62	63	64	65	66	67	68	69
Вопросы	72B	72Γ	72Д	72E	72Ж	72 3	72И	72K	73A	73Б	73B	73Г
Во	87	88	89	90	91	92	93	94	95	96	97	98
	187	188	189	190	191	192	193	194	195	196	197	198
	287	288	289	290	291	292	293	294	295	296	297	298

№ вар	25	26	27	28	29	30	31	32	33	34	35	36
	1	2	3	4	5	6	7	8	9	10	11	12
	30	31	32	33	34	35	36	37	38	39	40	41
СЫ	70	46	47	48	49	50	51	52	53	54	55	56
Вопросы	73Д	73E	73Ж	733	73И	73K	74A	74Б	74B	<i>74Γ</i>	74Д	74E
Bo	99	100	101	102	103	104	105	106	107	108	109	110
	199	200	201	202	203	204	205	206	207	208	209	210
	299	300	301	302	303	304	305	306	307	308	309	310

№ вар	37	38	39	40	41	42	43	44	45	46	47	48
	13	14	15	16	17	18	19	20	21	22	23	24
	42	43	44	45	26	27	28	29	30	31	32	33
СЫ	57	58	59	60	61	62	63	64	65	66	67	68
Вопросы	74Ж	743	74И	74K	71A	71Б	71B	71Г	71Д	71E	71Ж	713
Bo	111	112	113	114	115	116	117	118	119	120	121	122
	211	212	213	214	215	216	217	218	219	220	221	222
	311	312	313	314	315	316	317	318	319	320	321	322

№ вар	49	50	51	52	53	54	55	56	57	58	59	60
	25	1	2	3	4	5	6	7	8	9	10	11
	34	35	36	37	38	39	40	41	42	43	44	45
СЫ	69	70	69	68	67	66	65	64	63	62	61	60
Вопросы	71И	71K	72A	72Б	72B	<i>72Γ</i>	72Д	72E	72Ж	72 3	72И	72K
Bo	123	124	125	126	127	128	129	130	131	132	133	134
	223	224	225	226	227	228	229	230	231	232	233	234
	323	324	325	326	327	328	329	330	331	332	333	334

№ вар	61	62	63	64	65	66	67	68	69	70	71	72
	12	13	14	15	16	17	18	19	20	21	22	23
	45	44	43	42	41	40	39	38	37	36	35	34
СЫ	59	58	57	56	55	54	53	52	51	50	49	48
Вопросы	73A	73Б	73B	73Γ	73Д	73E	73Ж	733	73И	73K	74A	74Б
Bo	135	136	137	138	139	140	141	142	143	144	145	146
	235	236	237	238	239	240	241	242	243	244	245	246
	335	336	337	338	339	340	341	342	343	344	345	346

№ вар	73	74	75	76	77	78	79	80	81	82	83	84
	24	25	1	2	3	4	5	6	7	8	9	10
	33	32	31	30	29	28	27	26	28	29	30	31
	47	46	60	61	62	63	64	65	66	67	68	69
	74B	74Γ	74Д	74E	74Ж	743	74И	74K	72A	72Б	72B	72Γ
PI	147	148	149	150	151	152	153	154	155	156	157	158
Вопросы	247	248	249	250	251	252	253	254	255	256	257	258
Вог	347	348	349	350	351	352	353	354	355	356	357	358

№ вар	85	86	87	88	89	90	91	92	93	94	95	96
	11	12	13	14	15	16	17	18	19	20	21	22
	32	33	34	35	36	37	38	39	40	41	42	43
CbI	70	46	47	48	49	50	51	52	53	54	55	56
Вопросы	71A	71Б	71B	71Γ	71Д	73A	73Б	73B	73Γ	73Д	74A	74Б
Bo	159	160	161	162	163	164	165	166	167	168	169	170
	259	260	261	262	263	264	265	266	267	268	269	270
	359	360	361	337	338	339	340	341	342	343	344	345

№ вар	97	98	99	100
	23	24	25	1
	44	45	27	26
) (2) (2)	57	58	59	60
Вопросы	71Ж	713	71И	71K
Bo	171	172	173	174
	271	272	273	274
	347	348	349	347

ЗАДАНИЯ К КОНТРОЛЬНЫОЙ РАБОТЕ

- **1.** Вычертите диаграмму состояния железо карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения для сплава, содержащего 0,8% С. Схематически изобразите микроструктуру этого сплава при комнатной температуре.
- **2.** Вычертите диаграмму состояния железо карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения для сплава, содержащего 1,1% С. Схематически изобразите микроструктуру этого сплава при комнатной температуре.
- **3.** Вычертите диаграмму состояния железо карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения для сплава, содержащего 2,0% С. Схематически изобразите микроструктуру этого сплава при комнатной температуре.
- **4.** Вычертите диаграмму состояния железо карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения для сплава, содержащего 4,5% С. Схематически изобразите микроструктуру этого сплава при комнатной температуре.
- **5.** Вычертите диаграмму состояния железо карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения для сплава, содержащего 0,1% С. Схематически изобразите микроструктуру этого сплава при комнатной температуре.
- **6.** Вычертите диаграмму состояния железо карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения (с применением правила фаз) для сплава, содержащего 3,8% С. Какова структура этого сплава при комнатной температуре и как такой сплав называется?
- **7.** Вычертите диаграмму состояния железо карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения (с применением правила фаз) для сплава, содержащего 1,5% С. Какова структура этого сплава при комнатной температуре и как такой сплав называется?

- **8**. Вычертите диаграмму состояния железо карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения (с применением правила фаз) для сплава, содержащего 0,65% С. Какова структура этого сплава при комнатной температуре и как такой сплав называется?
- **9.** Вычертите диаграмму состояния железо карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения (с применением правила фаз) для сплава, содержащего 0,45% С. Какова структура этого сплава при комнатной температуре и как такой сплав называется?
- **10.** Вычертите диаграмму состояния железо карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения (с применением правила фаз) для сплава, содержащего 4,6% С. Какова структура этого сплава при комнатной температуре и как такой сплав называется?
- **11.** Вычертите диаграмму состояния железо карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения (с применением правила фаз) для сплава, содержащего 1,4% С. Какова структура этого сплава при комнатной температуре и как такой сплав называется?
- **12.** Вычертите диаграмму состояния железо карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения (с применением правила фаз) для сплава, содержащего 1,3% С. Какова структура этого сплава при комнатной температуре и как такой сплав называется?
- **13.** Вычертите диаграмму состояния железо карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения (с применением правила фаз) для сплава, содержащего 4,3% С. Какова структура этого сплава при комнатной температуре и как такой сплав называется?
 - 14. Вычертите диаграмму состояния железо карбид железа, укажите струк-

турные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения (с применением правила фаз) для сплава, содержащего 0,6% С. Какова структура этого сплава при комнатной температуре и как такой сплав называется?

- **15.** Вычертите диаграмму состояния железо карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения (с применением правила фаз) для сплава, содержащего 0,25% С. Какова структура этого сплава при комнатной температуре и как такой сплав называется?
- **16.** Вычертите диаграмму состояния железо карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения (с применением правила фаз) для сплава, содержащего 2,9% С. Какова структура этого сплава при комнатной температуре и как такой сплав называется?
- **17.** Вычертите диаграмму состояния железо карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения (с применением правила фаз) для сплава, содержащего 1,15% С. Какова структура этого сплава при комнатной температуре и как такой сплав называется?
- **18.** Вычертите диаграмму состояния железо карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения (с применением правила фаз) для сплава, содержащего 0,35% С. Какова структура этого сплава при комнатной температуре и как такой сплав называется?
- **19.** Вычертите диаграмму состояния железо карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения (с применением правила фаз) для сплава, содержащего 5,9% С. Какова структура этого сплава при комнатной температуре и как такой сплав называется?
- **20.** Вычертите диаграмму состояния железо карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и по-

стройте кривую охлаждения (с применением правила фаз) для сплава, содержащего 0,2% С. Какова структура этого сплава при комнатной температуре и как такой сплав называется?

- **21.** Вычертите диаграмму состояния железо карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения для сплава, содержащего 5,5% С. Схематически изобразите микроструктуру этого сплава при комнатной температуре.
- **22.** Вычертите диаграмму состояния железо карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения для сплава, содержащего 4,0% С. Схематически изобразите микроструктуру этого сплава при комнатной температуре.
- **23.** Вычертите диаграмму состояния железо карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения для сплава, содержащего 0,9% С. Схематически изобразите микроструктуру этого сплава при комнатной температуре.
- **24.** Вычертите диаграмму состояния железо карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения для сплава, содержащего 2,3% С. Схематически изобразите микроструктуру этого сплава при комнатной температуре.
- **25.** Вычертите диаграмму состояния железо карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения для сплава, содержащего 4,1% С. Схематически изобразите микроструктуру этого сплава при комнатной температуре.
- **26.** Расшифруйте марочный состав сталей и классифицируйте их по назначению: Ст4сп; 70; A22; 38ХМЮА; ШХ5; У10А; 4Х5В2ФС; Р10К5Ф5; 25Л. В каких из этих сталей малое содержание углерода? Укажите, какие из приведенных сталей относятся к низколегированным. Расшифруйте марки чугунов и укажите вид графита: СЧ25; ВЧ50; КЧ55-8В.
- **27.** Расшифруйте марочный состав цветных сплавов АМг2,5; АД31; Д18; АЛ19; Л75; ЛЦ14К3С3; БрБ-2,5; БрС5О7Ц5; БН. Укажите области применения указанных марок.

- **28.** Расшифруйте марочный состав сталей и классифицируйте их по назначению: Ст5кп; 30; А11; 25ХГМ; ШХ15СГ; У7; 6ХС; Р9К5; 35Л. Опишите влияние добавок хрома на свойства стали. Расшифруйте марки чугунов и укажите вид графита: СЧ25; ВЧ33; КЧ43-6.
- **29.** Расшифруйте марочный состав цветных сплавов АМг2; АК8; В95; АЛ2; Л63; ЛЦ35А3Ж; БрОСФ8-2-0,3; БрА6Ж6Н2; Б16. Укажите области применения указанных марок. Какие из них могут быть использованы в качестве антифрикционных материалов?
- **30.** Расшифруйте марочный состав сталей и классифицируйте их по назначению: Ст6пс; 50; А22; 15ХГ; ШХ15; У12А; 9ХВФ; Р18Ф2; 40Л. Укажите их применение. Расшифруйте марки чугунов и укажите вид графита: СЧ15; ВЧ70; КЧ35-3.
- **31.** Расшифруйте марочный состав цветных сплавов АМгl; В96; Д16; АЛ4; Л83; ЛЦ32Ж5Мц3; БрАЖ8-3; БрО7Ц3С2; Б83С. Сформулируйте основные требования, предъявляемые к антифрикционным материалам. Укажите области их применения.
- **32.** Расшифруйте марочный состав сталей и классифицируйте их по назначению: Ст4кп; 35; А40Г; 20ХГТ; ШХ6; У12; ХВСГ; Р6М5К5; 20Л. Укажите их применение. Расшифруйте марки чугунов и укажите вид графита: СЧ10; ВЧ50; КЧ55-7.
- **33.** Расшифруйте марочный состав цветных сплавов АМц1,3; АВ; Д1; АЛ13; Л80; ЛА67-2,5; БрАС5-6; БрС20К4; Б83.Опишите природу упрочнения при старении дюралюмина.
- **34.** Расшифруйте марочный состав сталей и классифицируйте их по назначению: Ст2; 35; АЦ30; 18Х2Н4ВА; ШХ6; У13; 6ХВ2С; Р9К10; 30Л. Опишите процесс получения ковкого чугуна. Какие из этих сталей относятся к низколегированным? Расшифруйте марки чугунов и укажите вид графита: СЧ20; ВЧ100; КЧ85-8.
- **35.** Расшифруйте марочный состав цветных сплавов АМц1,5; АК4; Д20; АЛ4; Л92; ЛАЖМц66-6-3-2; БрОФ-10-1; БрО7Ц3К2; Б88. Опишите влияние олова на свойства бронз.

- **36.** Расшифруйте марочный состав сталей и классифицируйте их по назначению: Ст3сп; 20; А40; 12ХГР; ШХ10; У7; 6Х3ВФ; Р6МЗ; 25Л. В каких из этих сталей малое содержание углерода? Какие относятся к низколегированным? Расшифруйте марки чугунов и укажите вид графита: СЧ45; ВЧ55; КЧ47-10.
- **37.** Расшифруйте марочный состав цветных сплавов АМг3С; АД33; Д16; АЛ9; Л96; ЛО70-1; БрС30; БрАМц10-2; Б83С. Какая из указанных латуней имеет название «томпак»? Опишите влияние цинка на свойства латуней.
- **38.** Расшифруйте марочный состав сталей и классифицируйте их по назначению: Ст3пс; 50; A20; 15ХГН2ТА; ШХ6; У9А; 9ХС; Р6М5Ф3; 45Л. Расшифруйте марки чугунов и укажите вид графита: СЧ25; ВЧ45; КЧ35-10.
- **39.** Расшифруйте марочный состав цветных сплавов АМц; АВ; Д20; АЛ4; Л85; ЛКС65-1,5-3; БрА7; БрАЖ9-4; БК2. Сформулируйте основные требования, предъявляемые к антифрикционным материалам.
- **40.** Расшифруйте марочный состав сталей и классифицируйте их по назначению: Ст2пс; 35; А35; 15ХГТ; ШХ9; У9А; 7Х2МН; Р6М5; 20Л. Расшифруйте марки чугунов и укажите вид графита: СЧ30; ВЧ40; КЧ33-10.
- **41.** Расшифруйте марочный состав цветных сплавов АМц1,5С; АК4-1; В96; АЛ5; Л93; ЛС59-1; БрА10Мц2Л; БрКМц3-1; БК. Опишите, каким способом производится упрочнение сплава АМг и объясните природу упрочнения.
- **42.** Расшифруйте марочный состав сталей и классифицируйте их по назначению: Ст3кп; 15; А20; 10ХСНД; ШХ6; У8; 7ХГ2В; Р9К5; 15Л. Расшифруйте марки чугунов и укажите вид графита: СЧ35; ВЧ35; КЧ55-9.
- **43.** Расшифруйте марочный состав цветных сплавов АМц1,3; АД33; В65; АЛ8; Л80; ЛМцС58-2-2; БрБ2; БрКМц3-1; БКА. Укажите области применения антифрикционных материалов.
- **44.** Расшифруйте марочный состав сталей и классифицируйте их по назначению: Ст2пс; 30; A20; 25ХГМ; ШХ15; У12; 9Х5ВФ; Р18Ф2; 50Л. Расшифруйте марки чугунов и укажите вид графита: СЧ25; ВЧ80; КЧ60-3.
- **45.** Расшифруйте марочный состав цветных сплавов АМц; АК6; Д16; АЛ9; Л70; ЛК 80-3; БрА5; БрОФ4-0,25; БС. Укажите области применения указанных марок.

- **46.** Запишите условное обозначение электрода марки ОЗС-4. Укажите механические свойства металла шва, характеристику электрода, его назначение и применение.
- **47.** Запишите условное обозначение электрода марки ОЗС-6. Укажите механические свойства металла шва, характеристику электрода, его назначение и применение.
- **48.** Запишите условное обозначение электрода марки УОНИ-13/55. Укажите механические свойства металла шва, характеристику электрода, его назначение и применение.
- **49.** Запишите условное обозначение электрода марки УОНИ-13/45. Укажите механические свойства металла шва, характеристику электрода, его назначение и применение.
- **50.** Запишите условное обозначение электрода марки АНО-4. Укажите механические свойства металла шва, характеристику электрода, его назначение и применение.
- **51.** Запишите условное обозначение электрода марки НИАТ-5. Укажите механические свойства металла шва, характеристику электрода, его назначение и применение.
- **52.** Запишите условное обозначение электрода марки ЭА-395/9. Укажите механические свойства металла шва, характеристику электрода, его назначение и применение.
- **53.** Запишите условное обозначение электрода марки АНЖР-1. Укажите механические свойства металла шва, характеристику электрода, его назначение и применение.
- **54.** Запишите условное обозначение электрода марки ТМЛ-1У. Укажите механические свойства металла шва, характеристику электрода, его назначение и применение.
- **55.** Запишите условное обозначение электрода марки КТИ-7А. Укажите механические свойства металла шва, характеристику электрода, его назначение и применение.
- **56.** Запишите условное обозначение электрода марки ОЗЛ-9А. Укажите механические свойства металла шва, характеристику электрода, его назначение и применение.
- **57.** Запишите условное обозначение электрода марки НЖ-13. Укажите механические свойства металла шва, характеристику электрода, его назначение и применение.
- **58.** Запишите условное обозначение электрода марки ЭА-400/10У. Укажите механические свойства металла шва, характеристику электрода, его назначение и

применение.

- **59.** Запишите условное обозначение электрода марки НИИ-48Г. Укажите механические свойства металла шва, характеристику электрода, его назначение и применение.
- **60.** Запишите условное обозначение электрода марки ОЗЛ-25Б. Укажите механические свойства металла шва, характеристику электрода, его назначение и применение.
- **61.** Запишите условное обозначение электрода марки Т-590. Укажите механические свойства металла шва, характеристику электрода, его назначение и применение.
- **62.** Запишите условное обозначение электрода марки УОНИ-13/НЖ/20Х13. Укажите механические свойства металла шва, характеристику электрода, его назначение и применение.
- **63.** Запишите условное обозначение электрода марки ЦН-12М. Укажите механические свойства металла шва, характеристику электрода, его назначение и применение.
- **64.** Запишите условное обозначение электрода марки ОЗЧ-3. Укажите механические свойства металла шва, характеристику электрода, его назначение и применение.
- **65.** Запишите условное обозначение электрода марки ЦЧ-4. Укажите механические свойства металла шва, характеристику электрода, его назначение и применение.
- **66.** Запишите условное обозначение электрода марки Комсомолец-100. Укажите механические свойства металла шва, характеристику электрода, его назначение и применение.
- **67.** Запишите условное обозначение электрода марки ОЗЛ-32. Укажите механические свойства металла шва, характеристику электрода, его назначение и применение.
- **68.** Запишите условное обозначение электрода марки ОЗР-1. Укажите механические свойства металла шва, характеристику электрода, его назначение и применение.
- **69.** Запишите условное обозначение электрода марки АНР–2М. Укажите механические свойства металла шва, характеристику электрода, его назначение и применение.
- **70.** Запишите условное обозначение электрода марки АНО-36. Укажите механические свойства металла шва, характеристику электрода, его назначение и применение.
 - 71. Определите скорость, мощность резания и основное время при токарной обра-

ботке за один рабочий ход вала из конструкционной стали (σ_{e}) диаметром d и длиной l. Условия обработки: глубина резания t, подача s. Обработка производится резцом с пластинкой твердого сплава (быстрорежущей стали), с главным углом в плане φ и стойкостью T (мин). Приведите схему обработки с обозначением на ней всех элементов режима резания.

А. $\sigma_e = 850$ МПа, d = 50 мм, l = 300 мм, t = 2.5 мм, s = 0.23 мм/об, $\varphi = 30^\circ$, T = 40 мин. Резец с пластинкой твердого сплава Т14К8. Станок 1К62.

Б. σ_{e} = 600 МПа, d = 60 мм, l = 400 мм, t = 3,2 мм, s = 0,3 мм/об, φ =45°, T = 45 мин. Резец с пластинкой твердого сплава Т5К10. Станок 1В62 Γ .

В. $\sigma_e = 750$ МПа, d = 100 мм, l = 450 мм, t = 2,1 мм, s = 0,4 мм/об, $\varphi = 60^\circ$, T = 60 мин. Резец с пластинкой твердого сплава Т30К4. Станок 1А62.

 Γ . $\sigma_e = 700$ МПа, d = 80 мм, l = 450 мм, t = 2.5 мм, s = 0.25 мм/об, $\varphi = 30^\circ$, T = 45 мин. Резец с пластинкой из быстрорежущей стали. Станок 1В62 Γ .

Д. $\sigma_e = 600$ МПа, d = 45 мм, l = 200 мм, t = 3.5 мм, s = 0.25 мм/об, $\varphi = 45^\circ$, T = 60 мин. Резец с пластинкой из быстрорежущей стали. Станок 16К20.

Е. $\sigma_e = 800$ МПа, d = 75 мм, l = 450 мм, t = 2,7 мм, s = 0,24 мм/об, $\varphi = 60^\circ$, T = 45 мин. Резец с пластинкой твердого сплава Т14К8. Станок 1К62.

Ж. $\sigma_{\!\scriptscriptstyle 6} = 500$ МПа, d = 80 мм, l = 400 мм, t = 2.5 мм, s = 0.35 мм/об, $\varphi = 30^\circ$, T = 30 мин. Резец с пластинкой из быстрорежущей стали. Станок 1В62 Γ .

3. σ_{e} = 650 МПа, d = 70 мм, l = 350 мм, t = 2,2 мм, s = 0,23 мм/об, φ =60°, T = 40 мин. Резец с пластинкой твердого сплава Т5К10. Станок 16К20.

И. $\sigma_{e} = 550$ МПа, d = 65 мм, l = 400 мм, t = 2,6 мм, s = 0,27 мм/об, $\varphi = 30^{\circ}$, T = 45 мин. Резец с пластинкой из быстрорежущей стали. Станок 1К62.

К. $\sigma_e = 750$ МПа, d = 55 мм, l = 300 мм, t = 3,5 мм, s = 0,32 мм/об, $\varphi = 45^\circ$, T = 60 мин. Резец с пластинкой твердого сплава Т30К10. Станок 1В62Г.

72. Определите скорость, мощность резания и основное время при токарной обработке за один рабочий ход вала из серого чугуна твердостью HB диаметром d и длиной l. Условия обработки: глубина резания t, подача s. Обработка производится резцом с пластинкой твердого сплава, с главным углом в плане φ и стойкостью T. Приведите схему обработки с обозначением на ней всех элементов режима резания.

А. HB=170 МПа, d=50 мм, l=300 мм, t=2,0 мм, s=0,23 мм/об, $\varphi=60^\circ$, T=30 мин. Резец с пластинкой твердого сплава ВК4. Станок 1А62.

Б. HB = 180 МПа, d = 60 мм, l = 350 мм, t = 3,5 мм, s = 0,33 мм/об, $\varphi = 45^{\circ}$, T = 40 мин. Резец с пластинкой твердого сплава ВК8. Станок 1A62Б.

В. HB = 190 МПа, d = 70 мм, l = 400 мм, t = 2,5 мм, s = 0,40 мм/об, $\varphi = 30^\circ$, T = 45 мин. Резец с пластинкой твердого сплава ВК6. Станок 1А62 Γ .

 Γ . HB = 200 МПа, d = 80 мм, l = 500 мм, t = 2,8 мм, s = 0,25 мм/об, φ =60°, T = 55 мин. Резец с пластинкой твердого сплава ВК4. Станок 16К20.

Д. HB = 210 МПа, d = 85 мм, l = 250 мм, t = 3,2 мм, s = 0,34 мм/об, $\varphi = 45^{\circ}$, T = 60 мин. Резец с пластинкой твердого сплава ВК8. Станок 1К62.

E. HB = 220 МПа, d = 75 мм, l = 500 мм, t = 2,7 мм, s = 0,24 мм/об, $\varphi = 60^\circ$, T = 45 мин. Резец с пластинкой твердого сплава ВКЗ. Станок 1А62.

Ж. HB = 230 МПа, d = 80 мм, l = 400 мм, t = 2,5 мм, s = 0,35 мм/об, $\varphi = 45^{\circ}$, T = 50 мин. Резец с пластинкой твердого сплава ВК4. Станок 16К20.

3. HB = 160 МПа, d = 65 мм, l = 450 мм, t = 2,2 мм, s = 0,32 мм/об, $\varphi = 30^\circ$, T = 35 мин. Резец с пластинкой твердого сплава ВК6. Станок 1А62Б.

И. HB = 240 МПа, d = 55 мм, l = 500 мм, t = 2,4 мм, s = 0,34 мм/об, $\varphi = 60^\circ$, T = 40 мин. Резец с пластинкой твердого сплава ВКЗ. Станок 1А62 Γ .

К. HB = 180 МПа, d = 75 мм, l = 200 мм, t = 2,1 мм, s = 0,26 мм/об, $\varphi = 45^\circ$, T = 50 мин. Резец с пластинкой твердого сплава ВК8. Станок 1A62.

73. Приведите схему разложения силы резания P при точении на составляющие P_z , P_x и P_y , объяснив их действие на заготовку. Определите величины этих составляющих и необходимую мощность электродвигателя при обработке вала из конструкционной стали (σ_e) диаметром d. Условия обработки: глубина резания t, подача s, частота вращения шпинделя n. Обработка производится резцом с пластинкой твердого сплава с главным углом в плане φ и стойкостью T. Приведите схему обработки с обозначением на ней всех элементов режима резания.

А. $\sigma_e = 600$ МПа, d = 120 мм, t = 5 мм, s = 0.48 мм/об, n = 230 мин⁻¹, $\varphi = 45^\circ$, T = 30 мин. Резец с пластинкой твердого сплава Т5К12В. Станок 1А62.

Б. $\sigma_e = 850$ МПа, d = 100 мм, t = 2.7 мм, s = 0.55 мм/об, n = 305 мин⁻¹, $\varphi = 60^\circ$, T = 40

мин. Резец с пластинкой твердого сплава Т15К6Т. Станок 1А62Б.

В. $\sigma_{e} = 450$ МПа, d = 90 мм, t = 3,3 мм, s = 0,7 мм/об, n = 380 мин⁻¹, $\varphi = 45^{\circ}$, T = 50 мин. Резец с пластинкой твердого сплава Т15К6. Станок 16К20.

 Γ . $\sigma_{s} = 750$ МПа, d = 80 мм, t = 5.5 мм, s = 0.35 мм/об, n = 400 мин⁻¹, $\varphi = 45^{\circ}$, T = 45 мин. Резец с пластинкой твердого сплава ВК8. Станок 1В62 Γ .

Д. $\sigma_e = 850$ МПа, d = 90 мм, t = 2.5 мм, s = 0.47 мм/об, n = 315 мин⁻¹, $\varphi = 60^\circ$, T = 55 мин. Резец с пластинкой твердого сплава Т30К4. Станок 1К62.

Е. $\sigma_e = 850$ МПа, d = 70 мм, t = 3.2 мм, s = 0.5 мм/об, n = 500 мин⁻¹, $\varphi = 45^\circ$, T = 60 мин. Резец с пластинкой твердого сплава Т14К8. Станок 1В62Г.

Ж. $\sigma_e = 450$ МПа, d = 90 мм, t = 4,5 мм, s = 0,18 мм/об, n = 480 мин⁻¹, $\varphi = 60^\circ$, T = 40 мин. Резец с пластинкой твердого сплава ВК8. Станок 1А62Б.

3. σ_e = 650 МПа, d = 110 мм, t = 3,5 мм, s = 0,46 мм/об, n = 280 мин⁻¹, φ = 45°, T= 35 мин. Резец с пластинкой твердого сплава Т5К12В. Станок 1К62.

И. $\sigma_6 = 500$ МПа, d = 100 мм, t = 5,2 мм, s = 0,6 мм/об, n = 340 мин⁻¹, $\varphi = 60^\circ$, T = 45 мин. Резец с пластинкой твердого сплава Т14К8. Станок 1А62.

К. $\sigma_e = 700$ МПа, d = 130 мм, t = 4.6 мм, s = 0.58 мм/об, n = 430 мин⁻¹, $\varphi = 45^\circ$, T = 40 мин. Резец с пластинкой твердого сплава ВК8. Станок 1В62 Γ .

74. Приведите схему разложения силы резания P при точении на составляющие P_z , P_x и P_y , объяснив их действие на заготовку. Определите величины этих составляющих и необходимую мощность электродвигателя при обработке вала из серого чугуна твердостью HB диаметром d. Условия обработки: глубина резания t, подача s, частота вращения шпинделя n. Обработка производится резцом с пластинкой твердого сплава с главным углом в плане φ и стойкостью T. Приведите схему обработки с обозначением на ней всех элементов режима резания.

А. HB = 170 МПа, d = 80 мм, t = 5 мм, s = 0.6 мм/об, n = 500 мин⁻¹, $\varphi = 30^\circ$, T = 60 мин. Резец с пластинкой твердого сплава ВК8. Станок 16К20.

Б. HB = 180 МПа, d = 90 мм, t = 2,7 мм, s = 0,57 мм/об, n = 400 мин⁻¹, $\varphi = 45^{\circ}$, T = 40 мин. Резец с пластинкой твердого сплава ВК4. Станок 1К62.

В. HB = 190 МПа, d = 70 мм, t = 3,3 мм, s = 0,7 мм/об, n = 630 мин⁻¹, φ = 60°, T= 30 мин. Резец с пластинкой твердого сплава ВК6. Станок 1К62.

- Γ . HB = 200 МПа, d = 80 мм, t = 5 мм, s = 0,33 мм/об, n = 610 мин⁻¹, $\varphi = 45^{\circ}$, T = 50 мин. Резец с пластинкой твердого сплава ВК8. Станок 1A62.
- Д. HB = 210 МПа, d = 100 мм, t = 3 мм, s = 0.4 мм/об, n = 460 мин⁻¹, $\varphi = 30^\circ$, T = 60 мин. Резец с пластинкой твердого сплава Т5К10. Станок 16К20.
- **E.** HB = 220 МПа, d = 110 мм, t = 4,5 мм, s = 0,4 мм/об, n = 370 мин⁻¹, $\varphi = 60^\circ$, T = 70 мин. Резец с пластинкой твердого сплава ВК8. Станок 1А62.
- **Ж.** HB=170 МПа, d=120 мм, t=5,5 мм, s=0,7 мм/об, n=620 мин⁻¹, $\varphi=45^\circ$, T=55 мин. Резец с пластинкой твердого сплава ВК4. Станок 16К20.
- **3.** HB=190 МПа, d=100 мм, t=3.5 мм, s=0.5 мм/об, n=530 мин⁻¹, $\varphi=30^\circ$, T=50 мин. Резец с пластинкой твердого сплава ВК8. Станок 1К62.
- **И.** HB = 200 МПа, d = 90 мм, t = 4 мм, s = 0,45 мм/об, n = 470 мин⁻¹, $\varphi = 60^{\circ}$, T = 40 мин. Резец с пластинкой твердого сплава ВК6. Станок 1А62.
- **К.** HB = 180 МПа, d = 70 мм, t = 2.5 мм, s = 0.35 мм/об, n = 350 мин⁻¹, $\varphi = 45^{\circ}$, T = 30 мин. Резец с пластинкой твердого сплава Т5К10. Станок 1К62.
- **75.** Опишите кристаллическое строение металлов. Приведите схематично основные типы кристаллических решеток, встречающихся у металлов, и укажите, какими параметрами они характеризуются.
- **76.** Опишите несовершенства строения реальных кристаллов металлов (вакансии, дислокации, блоки) и их влияние на механические и технологические свойства металлов.
- **77.** В чем проявляется сущность явления анизотропии в кристаллах? Как можно получить и использовать анизотропию в металлах?
- **78.** Опишите основные закономерности процесса кристаллизации. Влияние примесей и условий охлаждения на процесс кристаллизации металлов. Ответ поясните схемами.
- **79.** Построить кривую охлаждения для чистого железа и на этом примере пояснить сущность аллотропических (или полиморфных) превращений металлов и их использование.
- **80.** Как происходит кристаллизация металла в изложнице? Схематично поясните строение слитка спокойной стали.

- **81.** Какими физическими, химическими, механическими и технологическими свойствами характеризуются металлы? Как можно изменять ряд этих свойств?
- **82.** Изобразите диаграмму растяжения и опишите основные характеристики прочности.
 - 83. Опишите методы определения твердости металлов по Бринеллю и Роквеллу.
- **84.** Опишите методы определения твердости металлов по Виккерсу и микротвердости.
- **85.** Изобразите схему маятникового копра и опишите испытания на ударную вязкость.
 - 86. Изобразите кривую усталости, как проводят испытания на усталость.
 - 87. Дайте понятие правилу фаз, приведите пример применения этого правила.
- **88.** Изобразите диаграмму состояния сплавов, образующих механическую смесь компонентов и проведите анализ их по точкам, линиям и областям.
- **89.** Поясните применение правила отрезков и концентрации компонентов на диаграмме состояния двойных сплавов.
- **90.** Изобразите диаграмму состояния сплавов с неограниченной растворимостью компонентов в твердом состоянии и проведите анализ их по точкам, линиям и областям.
- **91.** Изобразите диаграмму состояния сплавов, образующих ограниченные твердые растворы и эвтектику, проведите анализ их по точкам, линиям и областям.
- **92.** Изобразите диаграмму состояния сплавов, испытывающих полиморфные превращения и проведите анализ их по точкам, линиям и областям.
- **93.** Приведите современную классификацию и маркировку сплавов на основе магния. Примеры применения этих сплавов в машиностроении.
- **94.** Приведите современную классификацию и маркировку сплавов на основе титана. Примеры применения этих сплавов в машиностроении.
- **95.** Опишите неметаллические конструкционные материалы: древесные и лакокрасочные материалы, состав, свойства, область применения.
- **96.** Опишите неметаллические конструкционные материалы: клеевые и прокладочные материалы, состав, свойства, область применения.
 - 97. Приведите классификацию композиционных материалов (по материаловед-

ческому, конструкционному, технологическому, эксплуатационному принципам).

- **98.** Опишите резиновые материалы. Общие сведения, состав и классификация резин.
 - 99. Опишите физико-механические свойства резин и их применение.
 - 100. Опишите неорганические материалы состав, свойства, область применения.
- **101.** Опишите структурные методы исследования металлов (макро- и микро- анализ), назначение этих методов.
- **102.** Опишите процессы, происходящие в металле при упругой и пластической деформации.
- **103.** Поясните основные механические свойства металлов и методы их определения.
- **104.** Какие процессы происходят при холодной пластической деформации? Как при этом изменяются и за счет чего свойства металла?
- **105.** Какие процессы происходят при горячей пластической деформации? Как при этом изменяются свойства металла и за счет чего?
- **106.** Поясните понятия: система, фаза, структура, компонент, сплав. Опишите процессы, происходящие при кристаллизации сплавов.
- **107.** Опишите и поясните схематически строение кристаллических решеток твердого раствора замещении и внедрения. Приведите примеры твердых растворов.
- **108.** Что собой представляет диаграмма состояния сплавов? Поясните термический метод построения диаграмм.
- **109.** Изобразите диаграмму состояния сплавов, образующих устойчивые химические соединения и проведите анализ их по точкам, линиям и областям.
- **110.** Изобразите диаграмму состояния сплавов системы железо карбид и проведите анализ ее по основным точкам, линиям, областям. Дайте определения основным структурным составляющим этой диаграммы.
- **111.** Изобразите диаграмму состояния сплавов системы железо карбид, укажите на ней структурные составляющие. Постройте кривую охлаждения для стали У8 и проанализируйте ее с применением правила фаз.
- **112.** Изобразите диаграмму состояния сплавов системы железо карбид, укажите на ней ее структурные составляющие. Постройте кривую охлаждения для чугуна с со-

держанием 3% углерода и проанализируйте ее с применением правила фаз.

- **113.** Изобразите диаграмму состояния сплавов системы железо карбид. Укажите на ней наличие фаз, существующих при различных температурах, дайте им определения и укажите значение основных механических свойств.
- **114.** Как классифицируются и маркируются углеродистые стали? Укажите влияние постоянных примесей на свойства стали.
- **115.** Опишите влияние углерода и постоянных примесей на механические и технологические свойства стали.
- **116.** Изобразите стабильную и метастабильную диаграммы железо карбид. Укажите расположение стабильных фаз на диаграмме и особенности процесса графитизации.
- **117.** Чем отличаются по свойствам и структуре серые, ковкие и высокопрочные чугуны? Приведите маркировку и область применения.
- **118.** Опишите технологию получения высокопрочных чугунов, их структуру, маркировку, свойства, область применения.
- **119.** Опишите технологию получения ферритной структуры ковкого чугуна, маркировку, свойства, область применения.
- **120.** Как влияют на свойства стали, положение критических точек, прокаливаемость такие легирующие элементы как никель, хром, вольфрам, ванадий, кобальт, кремний, марганец?
- **121.** Опишите маркировку легированной стали по ГОСТ. Приведите примеры применения конкретных марок легированной стали в машиностроении.
- **122.** Приведите классификацию легированных сталей по микроструктуре. Приведите примеры марок сталей согласно этой классификации и их применение в машиностроении.
- **123.** Описать кинетику образования зерна аустенита при нагреве железоуглеродистых сплавов. «Наследственная» и действительная величина зерна.
- **124.** Изобразите диаграмму изотермического превращения аустенита доэвтектоидной углеродистой стали. Опишите перлитное превращение аустенита.
- **125.** Изобразите диаграмму изотермического превращения аустенита эвтектоидной углеродистой стали. Опишите мартенситное превращение аустенита.

- **126.** Опишите превращения аустенита при изотермической выдержке 700°C, 650°C, 550°C и при охлаждении до 20°C со скоростью выше критической.
- **127.** Приведите современную классификацию видов термической обработки. Поясните назначение каждого вида.
- **128.** Опишите сущность, преимущества, недостатки и область применения различных производственных способов закалки стали.
- **129.** Изложите теоретические основы отпуска, его разновидности, назначение и влияние на структуру и механические свойства закаленной стали.
- **130.** Опишите основные виды дефектов, возникающих в результате закалки стали, причины их возникновения и способы предотвращения.
- **131.** Изложите сущность обработки холодом закаленных деталей. Опишите процессы, происходящие при этом в стали, приведите примеры применения.
- **132.** Опишите кратко технологию поверхностной закалки с нагревом токами высокой частоты шейки стального коленчатого вала. Укажите преимущества и недостатки этого способа и область его применения.
- **133.** Изложите сущность технологии высокотемпературной термомеханической обработки, процессов, происходящих при этом, укажите получаемую структуру и механические свойства стали.
- **134.** Изложите сущность технологии низкотемпературной термомеханической обработки, процессов, происходящих при этом, укажите получаемую структуру и механические свойства стали.
- **135.** Опишите кратко технологический процесс цементации деталей в твердом карбюризаторе и последующей термической обработки. Приведите примеры использования этого процесса для конкретных деталей.
- **136.** Опишите кратко технологический процесс газовой цементации деталей и последующей термической обработки. Область применения.
- **137.** Опишите кратко технологический процесс азотирования деталей и область его применения.
- **138.** Опишите кратко технологический процесс жидкого цианирования деталей, его разновидности, последующую термическую обработку и область применения.
 - 139. Опишите сущность, разновидности и область применения диффузионной

металлизации.

36

- **140.** Изложите особенности технологии термической обработки легированных сталей.
- **141.** Опишите влияние структуры и легирующих элементов на механические свойства конструкционных сталей.
- **142.** Изложите влияние различных видов термической обработки на свойства конструкционной стали.
- **143.** Дайте характеристику сталям, применяемым для изготовления цементуемых деталей.
- **144.** Дайте характеристику сталям, предназначенным для изготовления деталей, подвергаемых улучшению.
- **145.** Укажите основные преимущества легированных инструментальных сталей по сравнению с углеродистыми. Приведите марки и состав стали для изготовления режущего, штампового и измерительного инструмента.
- **146.** Опишите состав, строение, свойства и назначение нержавеющих сталей. Чем объясняются высокие антикоррозионные свойства нержавеющих сталей?
- **147.** Изложите свойства, особенности структуры и сущность технологии изготовления металлокерамических твердых сплавов. Приведите классификацию, маркировку по ГОСТ и область применения этих сплавов.
- **148.** Охарактеризуйте свойства, строение, приведите примеры применения жаропрочных и жаростойких сталей.
- **149.** Охарактеризуйте свойства, структуру, приведите примеры применения сплавов с особыми тепловыми свойствами.
- **150.** Охарактеризуйте свойства, структуру, приведите примеры применения износостойких сталей.
- **151.** Охарактеризуйте свойства, марки, термическую обработку, структуру пружинных сталей.
- **152.** Приведите современную классификацию и маркировку по ГОСТ латуней. Примеры применения этих сплавов в машиностроении.
- **153.** Приведите современную классификацию и маркировку по ГОСТ бронз. Укажите, какой термической обработке они подвергаются и как при этом изме-

няются их свойства. Укажите область применения бронз.

- **154.** Приведите современную классификацию и маркировку алюминиевых сплавов, приведите примеры применения этих сплавов в машиностроении.
- **155.** Опишите технологию термической обработки деформируемых алюминиевых сплавов и их применение в машиностроении.
- **156.** Опишите технологические и механические свойства литейных алюминиевых сплавов, технологию термической обработки и применение в машиностроении.
- **157.** Приведите современную классификацию и маркировку магниевых сплавов. Опишите их структуру и механические свойства. Приведите примеры применения.
- **158.** Изложите требования, предъявляемые к легкоплавким подшипниковым сплавам. Укажите сплавы, отвечающие этим требованиям, опишите их структуру и свойства. Приведите примеры применения.
- **159.** Опишите состав, свойства, технологию изготовления порошковых сплавов. Укажите область их применения.
- **160.** Опишите классификацию, строение полимеров и пластических масс и их применение в современном машиностроении.
- **161.** Опишите состав, строение и область применения термопластических пластмасс.
- **162.** Опишите состав, строение и область применения термореактивных пластмасс.
- **163.** Опишите технологический процесс изготовления деталей из термореактивных пластмасс методом прессования. Приведите схему процесса.
- **164.** Приведите схему и опишите технологический процесс изготовления деталей из термопластов методом литья под давлением. Укажите область применения.
- **165.** Приведите схему и опишите технологический процесс изготовления изделий из термопластов выдавливанием. Укажите область применения.
- **166.** Какие требования предъявляются к железно-рудному сырью и топливу для современных доменных печей? Какие материалы отвечают этим требованиям и применяются для выплавки чугуна?
 - 167. Изобразите схему доменной печи, опишите основные ее части и работу.

- **168.** Какие физико-химические процессы происходят в доменной печи при производстве чугуна? Представьте схематически профиль доменной печи, укажите основные ее части и изменение температуры по высоте печи.
- **169.** Изложите ход доменного процесса выплавки чугуна, напишите происходящие при этом реакции.
- **170.** Охарактеризуйте продукты доменного производства и применение их в народном хозяйстве.
- **171.** Какими параметрами характеризуются доменные печи? Приведите основные технико-экономические показатели работы доменных печей.
- **172.** В чем заключается сущность производства стали и чугуна? Какие существуют разновидности процессов получения стали? Дайте их сравнительную характеристику.
- **173.** Изобразите схему устройств кислородного конвектора. Поясните физикохимические процессы, протекающие в конверторе. Укажите перспективы развития этого способа получении стали.
- **174.** Опишите схему технологического процесса выплавки стали в кислородном конверторе. Какие стали получают этим способом?
- **175.** Изобразите схему мартеновской печи. Поясните физико-химические процессы, протекающие в основных мартеновских печах.
 - 176. Опишите этапы процесса выплавки стали в сталеплавильных агрегатах.
- **177.** Опишите разновидности мартеновского способа выплавки стали в зависимости от рода футеровки и состава шихты. Приведите примеры применения этих разновидностей.
- **178.** Опишите схему технологии выплавки стали в основной мартеновской печи скрап-рудным процессом. Укажите перспективы развития мартеновского способа выплавки стали.
- **179.** Опишите схему технологического процесса выплавки стали в основной дуговой электропечи. Приводите схему печи и укажите перспективы развития этого способа производства стали.
- **180.** Опишите существующие способы раскисления стали при ее выплавке. Как классифицируются стали в зависимости от степени раскисления и как при этом изме-

няются их свойства? Приведите схему строения слитка кипящей стали.

- **181.** Какие способы разливки стали после ее выплавки нашли широкое распространение в металлургии? Приведите схемы и поясните сущность технологии разливки по каждой схеме, укажите преимущества и недостатки.
- **182.** Опишите сущность современных способов повышения качества стали: обработка синтетическим шлаком, вакуумирование; приведите схемы электрошлакового и вакуумно-дугового переплава стали. Область применения этих сталей.
- **183.** Приведите схему, опишите процесс прямого восстановления железа из руд, его применение в нашей стране и перспективы развития.
- **184.** Опишите схему технологии пирометаллургического способа производства рафинированной меди.
 - 185. Опишите схему технологии получения рафинированного алюминия.
- **186.** Приведите схему литейного производства. Поясните значение литейного производства в автотракторном и сельскохозяйственном машиностроении. В чем состоит экономичность этого процесса?
- **187**. Опишите основные литейные свойства сплавов и пути получении отливок деталей без дефектов.
- **188.** Приведите характеристику элементов модельного комплекта, предназначенного для изготовления формы из песчано-глинистых смесей.
- **189.** Опишите состав, назначение, приготовление формовочных и стержневых материалов. Охарактеризуйте элементы литниковой системы, их назначение, разновидности, применение.
- **190.** Изложите различные виды машинной формовки. Укажите преимущества и недостатки и область применения каждого вида формовки.
- **191.** Опишите последовательность операций изготовления оболочковой литейной формы конкретной детали простейшей конфигурации. Преимущества и недостатки этого способа и область его применения. Ответ поясните схемами.
- **192.** Опишите последовательность операций изготовления литейной формы по выплавляемым моделям конкретной детали. Преимущества, недостатки и область применения этого способа. Ответ поясните схемами.
 - 193. Опишите технологию получения отливки детали в металлической форме.

Разновидности, преимущества, недостатки и область применения этого способа. Ответ поясните схемами.

- **194.** Опишите технологию получения отливки детали под давлением. Разновидности, преимущества, недостатки и область применения. Ответ поясните схемами.
- **195.** Изобразите схемы машин для центробежного литья с вертикальной и горизонтальной осями вращения. Опишите работу этих машин и область их применения.
- **196.** Опишите устройство печей, в которых получают литейные сплавы необходимого состава и качества для производства отливок различными способами из серого, ковкого, высокопрочного чугунов, стали, алюминиевых и медных сплавов. Ответ поясните схемами.
- **197.** Опишите особенности технологии изготовления отливок из серого и высокопрочного чугуна. Поясните способы получения различных структур и механические свойства отливок из этих чугунов. Область применения.
- **198.** Опишите особенности технологии изготовления отливок из ковкого чугуна, получения различных структур и механические свойства отливок. Область применения.
- **199.** Опишите особенности технологии изготовления стальных отливок и область их применения.
- **200.** Опишите особенности технологии изготовления отливок деталей из силуминов и область их применения.
- **201.** Опишите особенности технологии изготовления отливок деталей из медных сплавов и область их применения.
- **202.** Опишите физико-механическую сущность обработки металлов давлением. Поясните значение обработки металлов давлением для сельскохозяйственного машиностроения и ремонтного производства.
- **203.** Какие происходят процессы, как изменяются структура, физические и механические свойства литого металла в результате его горячей обработки давлением?
- **204.** Какие происходят процессы, как изменяются структура, физические и механические свойства металлов при холодной обработке давлением?
- **205.** Как изменяются эксплуатационные характеристики стальных деталей после поверхностной обработки их дробью, шариками и т. п.?

- **206.** Какие процессы происходят в металле при его горячей обработке давлением? Что такое критическая степень деформации, и каково ее значение для большинства металлов?
- **207.** Опишите характер изменений структуры и механических свойств металла в результате его горячей обработки давлением. На примере штампованного стального коленчатого вала поясните явление волокнистости и его использование.
- **208.** Опишите явления, происходящие в металле при его нагреве. Какие дефекты возникают или могут возникнуть в стальной заготовке при ее нагреве перед горячей обработкой давлением? Меры, предупреждающие их возникновение, их устранение.
- **209.** Какие нагревательные устройства применяются для нагрева металла при различных видах горячей обработки? Опишите преимущества и недостатки каждого и область применения.
- **210.** Начертите схему устройства методической нагревательной печи и опишите ее работу. Как определяется продолжительность нагрева поковок?
- **211.** На диаграмме состояния сплавов железо углерод изобразите температурный интервал горячей обработки давлением углеродистых сталей и поясните, какие факторы влияют на выбор температур начала и конца обработки
- **212.** Изложите сущность, преимущества и недостатки индукционного и контактного электронагрева заготовок перед горячей обработкой давлением по сравнению с нагревом в камерных нагревательных печах. Приведите схемы.
- **213.** Опишите сортамент проката. Ответ поясните эскизами. Приведите примеры применения проката при изготовлении деталей тракторов, автомобилей и сельскохозяйственных машин. В чем состоит эффективность применения проката в народном хозяйстве?
- **214.** Приведите схему прокатного стана, опишите его работу, опишите классификацию прокатных станов по устройству, назначению и взаимному расположению рабочих клетей.
- **215.** Опишите технологический процесс производства листового проката. Укажите исходный материал, применяемое оборудование, схему процесса, применение листового проката.

- **216.** Опишите технологический процесс прокатки сварных труб. Укажите исходный материал, оборудование, схему процесса и применение сварных труб в народном хозяйстве.
- **217.** Опишите технологический процесс прокатки бесшовных труб. Укажите исходный материал, оборудование, схему процесса и применение бесшовных труб в народном хозяйстве.
- **218.** Опишите кратко инструмент и оборудование, применяемые при прокатке. Ответ поясните схемами.
- **219.** Опишите технологический процесс свободной ковки конкретной поковки. Укажите исходный материал, оборудование, инструмент и область применения. Ответ поясните схемами.
- **220.** Опишите основные операции свободной ковки и используемый при этом инструмент. Укажите применение свободной ковки в машиностроении и ремонте сельскохозяйственных машин. Ответ поясните схемами.
- **221.** Изобразите схему, поясните устройство и работу пневматического ковочного молота, опишите область его применения.
- **222.** Опишите последовательность разработки технологического процесса свободной ковки. Ответ поясните схемами.
- **223.** Опишите технологические особенности свободной ковки высоколегированных сталей, цветных металлов и их сплавов. Какие требования предъявляются к конфигурации поковок?
- **224.** На примере ступенчатого стального вала опишите методику расчета массы исходной заготовки.
- **225.** Опишите сущность технологии горячей объемной штамповки, ее преимущества, недостатки по сравнению со свободной ковкой и область применения.
- **226.** Опишите разновидности горячей объемной штамповки, применяемое при этом оборудование и инструмент. Ответ поясните схемами.
- **227.** Приведите схему многоручьевого штампа и опишите технологию горячей объемной штамповки в них. Поясните расчет размеров исходной заготовки для объемной штамповки.
 - 228. Опишите сущность, разновидности процесса холодной объемной штам-

повки и ее область применения с конкретными примерами.

- **229.** Опишите сущность процесса листовой штамповки, ее преимущества, оборудование, инструмент и область применения.
- **230.** Изложите сущность технологии прессования металлов, его разновидности, исходный материал, получаемые профили, используемое оборудование, инструмент и область применения.
- **231.** Опишите сущность технологии волочения прутков, исходный материал, оборудование, инструмент и область применения.
- **232.** Опишите сущность технологии волочения стальной проволоки, исходный материал, оборудование, инструмент и область применения.
- **233.** Опишите сущность технологии волочения труб, ее разновидности, исходный материал, оборудование, инструмент и область применения.
- **234.** Какое значение имеет сварка в сельскохозяйственном машиностроении и ремонтном производстве? Приведите конкретные примеры применения различных видов сварки. Роль советских ученых в развитии сварочного производства.
 - 235. Приведите и поясните классификацию процессов сварки по ГОСТ.
- **236.** Опишите физические основы сварки. Поясните свариваемость различных металлов и сплавов.
- **237.** Опишите металлургические, химические и физические явления, протекающие при сварке. Приведите схему строения сварочного шва, поясните структурные изменения в околошовной зоне и их влияние на механические свойства сварного соединения.
- **238.** Опишите напряжения и деформации, возникающие в результате сварки, способы их предупреждения и устранения.
- **239.** Опишите сущность дуговой сварки, ее разновидности, преимущества, недостатки каждого вида и область применения. Ответ поясните схемами.
 - 240. Приведите основные свойства электрической дуги и поясните их.
- **241.** Какие источники сварочного тока применяются для питания сварочной дуги? Приведите их основные характеристики, преимущества, недостатки, область применения. Ответ пояснить схемами.
 - 242. Опишите дуговую сварку по методу Н.Н. Бенардоса и Н. Г. Славянова.

Преимущества. Недостатки и область применения.

- **243.** Приведите и поясните схему ручной дуговой сварки плавящимся электродом. В чем заключается и как осуществляется выбор режима ручной дуговой сварки?
- **244.** Приведите и опишите классификацию и маркировку электродов для ручной дуговой сварки.
- **245.** Приведите и опишите современную классификацию сварных соединений и швов. Укажите условное изображение и обозначение швов сварных соединений на чертежах.
- **246.** Опишите подготовку металла под сварку, выбор режима ручной дуговой сварки и технологию ее проведения.
- **247.** Приведите упрощенную электрическую схему сварочного трансформатора и его вольт-амперную характеристику. Поясните его работу, преимущества, недостатки. Применение технологии сварки переменным током.
- **248.** Приведите упрощенную электрическую схему трехфазного сварочного выпрямителя, вольт-амперные характеристики. Опишите их работу, преимущества, недостатки. Применение технологии сварки постоянным током.
- **249.** Опишите основные свойства сварочной дуги, ее разновидности, строение, вольтамперные характеристики, горение, плавление и перенос металла в дуге.
- **250.** Опишите особенности металлических процессов при сварке плавлением, основные реакции в зоне сварки и кристаллизацию наплавленного слоя.
- **251.** Опишите строение сварного шва и структурные изменения в зоне термического влияния. Приведите схему сварочного шва и зоны термического влияния при ручной дуговой сварке низкоуглеродистой и среднеуглеродистой стали.
- **252.** Типы электродов для дуговой сварки конструкционных углеродистых и низколегированных сталей. Условное обозначение электродов.
- **253.** Укажите назначение и разновидности покрытий электродов. Применение электродов в зависимости от состава покрытия.
- **254.** Поясните причины возникновения напряжений и деформаций при сварке и опишите основные мероприятия по их уменьшению.
- **255.** Опишите термическую обработку сварных изделий, ее назначение, разновидности, получаемую структуру и свойства металла изделия и сварочного шва.

- **256.** Опишите технологию дуговой сварки под слоем флюса. Приведите схему процесса автоматической сварки под слоем флюса, ее преимущества, недостатки и область применения.
- **257.** Приведите наиболее распространенные марки сварочных флюсов, применяемых при автоматической сварке, их состав, назначение и область применения.
- **258.** Опишите сущность процесса сварки под слоем флюса, его разновидности, применение. Ответ поясните схемой.
- **259.** Приведите строение сварного соединения, полученного сваркой под слоем флюса. Опишите ход металлургических процессов, происходящих при сварке под слоем флюса.
- **260.** Опишите сущность технологии дуговой сварки в среде защитных газов, ее разновидности и область применения.
- **261.** Опишите сущность технологии дуговой сварки в углекислом газе, применяемые материалы, преимущества, недостатки и область применения.
- **262.** Опишите сущность технологии дуговой сварки, в аргоне, применяемые материалы, преимущества, недостатки и область применения.
- **263.** Опишите сущность технологии аргонодуговой сварки плавящимся и неплавящимся электродом, оборудование и область применения.
- **264.** Опишите технологию сварки в углекислом газе, оборудование, материалы и область применения.
- **265.** Опишите технологию плазменной сварки, ее разновидности, оборудование, материалы и область применения. Ответ поясните схемами.
- **266.** Опишите технологию электрошлаковой сварки, ее преимущества, недостатки, применяемое оборудование и область применения. Ответ поясните схемой процесса.
- **267.** Опишите технологию электронно-лучевой сварки, ее преимущества, недостатки и область применения. Ответ поясните схемой процесса.
- **268.** Опишите сущность технологии ультразвуковой сварки, преимущества, недостатки и область применения. Ответ поясните схемой процесса.
- **269.** Опишите сущность технологий сварки трением, ее преимущества, недостатки, область применения. Ответ поясните схемой процесса.

- **270.** Опишите сущность технологии диффузионной сварки, ее преимущества, область применения. Ответ поясните схемой процесса.
- **271.** Опишите сущность разновидности контактной сварки и ее применение в машиностроении. Ответ поясните схемами.
- **272.** Опишите технологию стыковой сварки, ее достоинства, недостатки, оборудование, область применения. Ответ поясните схемой процесса.
- **273.** Опишите технологию точечной сварки, ее достоинства, недостатки, оборудование, область применения. Ответ поясните схемой процесса.
- **274.** Опишите технологию шовной сварки, ее достоинства, недостатки, оборудование, область применения. Ответ поясните схемой процесса.
- **275.** Опишите технологию сварки аккумулированной энергией, достоинства, недостатки, оборудование, область применения. Ответ поясните схемой процесса.
- **276.** Какое оборудование применяется для контактной сварки? Приведите схемы, дайте ему характеристику, опишите работу и область применения.
- **277.** Какое оборудование применяется для газовой сварки? Приведите схемы, дайте краткую характеристику, опишите устройство и назначение.
- **278.** Укажите, какие газы, присадочные материалы и флюсы применяются для газовой сварки.
- **280.** Приведите разновидности ацетиленовых генераторов, используемых в сварочном производстве. Дайте схему одного из них, опишите его устройство и работу.
- **281.** Опишите устройство газовых баллонов для хранения и транспортировки кислорода и ацетилена. Приведите схему устройства и работы редуктора для кислорода и ацетилена.
- **282.** Приведите схемы инжекторной и безинжекторной сварочных горелок, поясните их работу и применение.
- **283.** Опишите образование газосварочного пламени. Приведите схему строения ацетилено-кислородного пламени и поясните ее. При сварке каких материалов и почему применяют нормальное, окислительное и науглераживающее пламя горелки?
- **284.** Опишите технологию газовой сварки стали, основные ее способы и область применения. Ответ поясните схемами.

- **285.** Дайте характеристику оборудования, аппаратуры для газо-кислородной резки металлов. Кратко опишите технологию и область применения газокислородной резки металлов. Ответ поясните схемами.
- **286.** Дайте краткую характеристику процессов наплавки, используемых при восстановлении деталей машин при их ремонте.
- **287.** Опишите сущность технологии пайки металлов, ее разновидности и область применения.
- **288.** Опишите особенности технологии сварки углеродистых, легированных и высоколегированных сталей.
 - 289. Опишите особенности технологии и разновидности процессов сварки чугуна.
 - 290. Опишите способы контроля сварных и паяных соединений.
- **291**. Приведите схемы основных видов обработки металлов резанием (точения, сверления, строгания, фрезерования, шлифования). Обозначьте элементы режима резания (V,s, t) и дайте им определение для каждого вида обработки.
- **292.** На схемах точения, сверления, строгания, фрезеровании, шлифования покажите обрабатываемую, обработанную поверхность и поверхность резания.
- **293.** На эскизе токарного резца покажите главные углы (γ , β , α), дайте им определение, укажите их примерные числовые значения.
- **294.** Опишите кратко материалы для изготовления металлорежущих инструментов: углеродистые, легированные, быстрорежущие стали, металлокерамические твердые сплавы, минеральная керамика, алмаз, гексанит-р, эльбир-р (основные марки, химический состав, область применения).
- **295.** Опишите требования к металлорежущему инструменту (механическая прочность, износостойкость, твердость, теплостойкость, минимальная склонность к слипанию).
- **296.** Приведите эскизы видов стружек (сливная, скалывания, надлома). При каких условиях получается каждый вид стружки?
- **297.** Напишите уравнение теплового баланса процесса резания и поясните его. Как распределяется тепло между стружкой, заготовкой, резцом и окружающей средой?
- **298.** Опишите виды износа инструмента: абразивный, адгезионный, окислительный, электродиффузионный.

- **299.** Приведите эскизы износа инструментов (резца, сверла, зуба фрезы). Какие факторы и как влияют на интенсивность изнашивания инструментов?
- **300.** Приведите схемы способов подвода в зону резания смазочноохлаждающей жидкости и дайте краткую характеристику каждого способа.
- **301.** Опишите критерии оценки шероховатости обработанной поверхности по ГОСТ 2789-73.
- **302.** Что понимается под шероховатостью поверхности (ГОСТ 25142-82)? Приведите и поясните графические зависимости шероховатости поверхности от элементов режима резания (V, s, t).
- **303.** Опишите, какие факторы и как влияют на силу резания при точении. Приведите графические зависимости.
 - 304. Опишите порядок расчета мощности и кругящего момента резания при точении.
- **305.** Дайте понятие стойкости инструмента. Опишите, какие факторы и как влияют на стойкость инструмента. Приведите графические зависимости.
- **306.** Дайте понятие скорости резания. Опишите, какие факторы и как влияют на скорость резания, приведите графические зависимости.
- **307.** Приведите формулу для расчета скорости резания при точении. Опишите, как будет меняться скорость резания при изменении подачи, глубины резания, стойкости инструмента.
- 308. Опишите кратко пути увеличения производительности работы при то-карной обработке (точении).
- **309.** Дайте понятие основному (машинному) времени. Приведите формулу для его расчета при точении и поясните ее, приведя схему продольного точения.
- **310.** Дайте понятие штучного времени. Из каких элементов оно состоит? Как можно уменьшить штучное время?
- **311.** Дайте определение понятиям: передаточное отношение, передача. Приведите схемы основных передач, применяемых в станках, и напишите, чему равны их передаточные отношения.
- **312.** Что такое привод станка? Каковы преимущества привода с бесступенчатым регулированием частоты вращения по сравнению с приводом, имеющим ступенчатое регулирование? Приведите схемы этих приводов станков и поясните

их работу.

- **313.** Нарисуйте кинематическую схему главного движения токарновинторезного станка модели 1К62 и определите по ней минимальную частоту вращения шпинделя.
 - 314. Опишите закон построения ряда частот вращения шпинделя станка и ряда подач.
- **315.** Нарисуйте кинематическую схему главного движения вертикальносверлильного станка и по ней подсчитайте максимальную частоту вращения сверла. Приведите схемы основных видов инструментов для обработки отверстий и опишите область применения каждого из них. Укажите точность и шероховатость обработанной поверхности после каждого инструмента.
- **316.** Нарисуйте кинематическую схему главного движения широкоуниверсального фрезерного станка. Определите по ней максимальную частоту вращения шпинделя.
- **317.** На схеме строгания заготовки покажите скорость резания, глубину резания, подачу и дайте им определение. Приведите схему строгального резца и покажите на ней главные углы (γ , β , α). Материал резцов.
- **318.** Нарисуйте гидрокинематическую схему поперечно-строгального станка и кратко опишите работу гидропривода при рабочем ходе (строгании заготовки).
- **319.** Назначение и область применения обработки заготовок протяжками. Укажите достигаемую точность обработки и шероховатости поверхности. На схеме протяжки укажите ее составные части, на схеме зуба протяжки его главные углы. Дайте им определение.
- **320.** Нарисуйте и поясните схемы двух методов нарезания зубчатых колес: копирования и огибания (обкатки).
- **321.** Дайте эскиз цилиндрической фрезы с винтовыми зубьями и обозначьте главные углы зуба фрезы. Укажите преимущества цилиндрических фрез с винтовыми (спиральными) зубьями.
- **322.** Опишите кратко основные типы шлифовальных станков, указав схематически обработку поверхностей заготовок на этих станках. Какая точность обработка и шероховатость поверхности достигаются при обработке заготовок на шлифовальных станках? Что такое зернистость шлифовального круга? Как обозначается зернистость шлифовальных кругов согласно ГОСТ? Как следует выби-

рать круги по зернистости?

- **323.** Нарисуйте схему бесцентрового шлифования и объясните по ней, как осуществляется продольная подача заготовки на станке. Какие круги (твердые или мягкие) применяются при шлифовании закаленной стали и меди и почему?
- **324.** Кратко опишите устройство и работу круглошлифовального станка. Дайте пример маркировки шлифовального круга, объяснив значение букв и цифр в этой маркировке.
- **325.** Приведите схемы способов шлифования деталей на круглошлифовальном станке с указанием характера движения обрабатываемой детали, шлифовального круга. Укажите на схемах скорости резания и подачи, дайте их размерности.
- **326.** Перечислите виды отделочных операций при обработке металлов резанием, укажите их назначение и оборудование, применяемое для выполнения этих операций. Дайте характеристику шероховатости и точности обработанной поверхности при хонинговании.
- **327.** Укажите назначение и область применения токарно-револьверных станков; перечислите достоинства этих станков по сравнению с токарно-винторезными. Изобразите схематически обработку какой-либо заготовки на токарно-револьверном станке с использованием в револьверной головке 5—б инструментов.
- **328.** Вычертите кинематическую схему вертикально-сверлильного станка. Определите по ней минимальную частоту вращения шпинделя. Инструмент, применяемый при сверлении и зенкеровании.
- **329.** Кратко опишите устройство и работу радиально-сверлильного станка. По кинематической схеме станка (ее следует вычертить) подсчитайте максимальную частоту вращения шпинделя.
- **330.** Опишите сущность высокопроизводительной обработки металлов на токарных станках (скоростное и силовое резание). Дайте эскизы применяемых резцов при этих видах обработки, указав их особенности.
- **331.** На эскизе токарного резца покажите углы в плане (ϕ , ϵ , ϕ_1), дайте им определение.
- **332.** На эскизе сверла покажите главные углы (α, β, γ) дайте им определение, укажите их примерные числовые значения.

- **333.** На эскизе прямозубой фрезы покажите главные углы зуба фрезы (α , β , γ), дайте им определение, укажите их примерные числовые значения.
- **334.** На эскизе протяжки покажите главные углы зуба протяжки (α , β , γ), нарисовав зуб протяжки в увеличенном виде; дайте им определение, укажите их примерные числовые значения.
- **335.** Опишите явление наклепа при резании пластичных металлов. На схеме строгания заготовки покажите зону наклепа. Как влияет поверхностно-пластическое деформирование (ППД) детали на ее износостойкость?
- **336.** Опишите колебания при резании металлов (вынужденные и автоколебания). Как влияют колебания на износ инструмента, станка, шероховатость поверхности, точность обработки. Как уменьшить колебания?
- **337.** Что понимается под стойкостью инструмента? Ее зависимость от скорости резания, влияние на точность обработки. Способы повышения стойкости.
- **338.** Дайте понятие основному (машинному) времени при сверлении. Приведите формулу для его расчета и поясните ее, приведя схему сверления сплошной заготовки.
- **339.** Дайте понятие основному (машинному) времени при фрезеровании. Приведите формулу для его расчета и поясните ее, приведя схему фрезерования заготовки.
- **340.** Дайте понятие основному (машинному) времени при шлифовании. Приведите формулу для его расчета при шлифовании наружной цилиндрической поверхности, приведя схему шлифования заготовки.
- **341.** Как определить элементы режима резания: скорость резания V, подачу S и глубину резания t при точении? Покажите элементы на схеме точения заготовки.
- **342.** Как определить элементы режима резания: скорость резания V, подачу S и глубину резания t при сверления сплошной заготовки? Покажите элементы на схеме сверления заготовки.
- **343.** Как определить элементы режима резания: скорость резания V, минутную подачу S и глубину резания t при фрезеровании? Покажите элементы на схеме фрезерования заготовки.
 - 344. Нарисуйте принципиальную схему и изложите сущность электроискро-

вой обработки. Укажите область применения, производительность и точность обработки.

- **345.** Приведите принципиальную схему и изложите сущность анодномеханической обработки. Укажите область применения, производительность и точность обработки.
- **346.** Нарисуйте принципиальную схему и опишите сущность ультразвуковой обработки. Укажите область применения, производительность и точность обработки.
- **347.** Нарисуйте принципиальные схемы и изложите сущность обработки материалов лазерами, электронным лучом. Укажите область применения.
- **348.** Изложите сущность обработки деталей пластическим деформированием. Укажите область применения. Нарисуйте и поясните схему обработки поверхности детали типа «вал» шариками, указав получаемые точность обработки и шероховатость поверхности.
- **349.** Изложите сущность обработки деталей пластическим деформированием. Область применения. Нарисуйте и поясните схему обработки поверхности отверстия роликами, указав получаемые точность обработки и шероховатость поверхности.
- **350.** Опишите сущность выглаживания как метода обработки деталей пластическим деформированием. Нарисуйте и поясните схему выглаживания поверхности детали типа «вал», указав получаемые точность обработки и шероховатость поверхности.
- **351.** Опишите сущность изготовление деталей из полимерных композиционных материалов.
 - 352. Опишите способы горячего формирования деталей из пластмасс.
 - 353. Опишите способы механической обработки деталей из пластмасс.
- **354.** Изложите технологию приготовления резиновых смесей и формообразование деталей из резины.
- **355.** Опишите технологию изготовления резинотехнических деталей методами каландрованием, непрерывным выдавливанием.
- **356.** Опишите технологию изготовления резинотехнических деталей методами прессованием, литьем под давлением, намоткой.

- **357.** Опишите технологию изготовления изделий из металлических композиционных материалов.
- **358.** Опишите технологию изготовления деталей из композиционных порошковых материалов.
- **359.** Опишите технологию изготовления деталей из полимерных композиционных материалов.
- **360.** Опишите сущность процесса и способы пайки, применяемые материалы для пайки.
- **361.** Опишите сущность процесса и область применения получение неразъемных соединений склеиванием.

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ ДЛЯ САМОСТОЯТЕЛЬНОЙ И КОНТРОЛЬНОЙ РАБОТЫ

- 1. *Материаловедение и технология материалов* [Электронный ресурс]: учебное пособие / под ред. А.И. Батышева, А.А. Смолькина. Москва: ИНФРА-М, 2023. 288 с. Текст: электронный. URL: https://znanium.com/catalog/product/1877070. Режим доступа: по подписке.
- 2. *Афанасьев, А. А. Технология конструкционных материалов* [Электронный ресурс]: учебник / А. А. Афанасьев, А. А. Погонин. 2-е изд., стер. Москва: ИНФРА-М, 2021. 656 с. Текст: электронный. URL: https://znanium.com/catalog/product/1190681. Режим доступа: по подписке.
- 3. Галимов, Э.Р. Современные конструкционные материалы для машиностроения [Электронный ресурс]: учебное пособие / Э.Р. Галимов, А.Л. Абдуллин. 3-е изд., стер. Санкт-Петербург: Лань, 2020. 268 с. ISBN 978-5-8114-4864-7. Текст: электронный // Электронно-библиотечная система «Лань» : [сайт]. URL: https://e.lanbook.com/book/126707. Режим доступа: для авториз. пользователей.
- 4. *Горохов, В. А. Материалы и их технологии* [Электронный ресурс]: в 2 частях. Часть 1: учебник / В.А. Горохов, Н.В. Беляков, А.Г. Схиртладзе; под ред. В.А. Горохова Москва: ИНФРА-М, 2021. 589 с.: ил. Текст: электронный. URL: https://znanium.com/catalog/product/1793978. Режим доступа: по подписке.
 - 5. Горохов, В. А. Материалы и их технологии [Электронный ресурс]: учебник: 2

- частях. Часть 2 / В. А. Горохов, Н. В. Беляков, А. Г. Схиртладзе; под ред. В. А. Горохова. Москва: ИНФРА-М, 2020. 533 с.: ил. Текст: электронный. URL: https://znanium.com/catalog/product/1064170 (дата обращения: 17.10.2022). Режим доступа: по подписке.
- 6. *Оськин В.А.* Материаловедение. Технология конструкционных материалов/ В.А. Оськин и др. Кн. 1 М.: КолосС, 2008 447с.4.
- 7. Фетисов Г. П. Материаловедение и технология металлов: Учебник /Г.П. Фетисов, Ф.А. Гарифуллин. М.: Издательство «Оникс», 2007. 624 с.
- 8. *Материаловедение. Технология конструкционных материалов.* учебник для студентов вузов. Кн.2. /В.Ф. Карпенко, В.Н. Байкалова и др. Кн. 2 М.: КолосС, 2006. 311с.
- 9. *Дальский А.М.* Технология конструкционных материалов./А.М. Дальский и др.-М.: Машиностроение; 2005. 592с.
- 10. *Черепахин А.А.* Материаловедение: учеб. для студ. учреждений сред. проф. образования. М.: «Академия», 2004. 256 с.
- 11. *Марочник сталей и сплавов*/ под ред. А.С. Зубченко. М.: Машиностроение, 2001. 671 с.

III СПИСОК ВОПРОСОВ К ЭКЗАМЕНУ ПО ДИСЦИПЛИНЕ «МАТЕРИАЛОВЕДЕНИЕ И ТЕХНОЛОГИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ»

- 1. Свойства металлов и сплавов. Физико-химические свойства материалов.
- 2. Механические свойства и их характеристики (твердость).
- 3. Механические свойства и их характеристики (прочность и пластичность).
- 4. Основы теории кристаллизации металлических материалов. Влияние внешних факторов на структуру. Условия и механизм кристаллизации. Строение металлического слитка.
- 5. Деформация и разрушение металлических материалов. Упругая и пластическая деформация; разрушение.
- 6. Зависимость прочности от наличия дефектов в металле. Влияние макро- и мик-

родефектов строения на процессы деформации.

- 7. Свойства и строение металлов. Кристаллические решетки. Несовершенства реальных кристаллов.
- 8. Основы теории образования сплавов. Типы сплавов и их структурные составляющие.
- 9. Типы диаграмм состояния сплавов и их взаимосвязь со структурой и свойствами сплавов.
- 10. Оборудование для приготовления макро-и микрошлифов.
- 11. Устройство и принцип работы металлографических микроскопов.
- 12. Методика проведения макроструктурного и микроструктурного анализа.
- 13. Диаграмма состояния сплавов железо-цементит, ее структурные составляющие.
- 14. Влияние углерода, нормальных примесей, способа производства на свойства стали.
- 15. Маркировка конструкционных углеродистых сталей и область применения.
- 16. Маркировка инструментальных углеродистых сталей и область применения.
- 17. Маркировка чугунов, влияние формы графитовых включений на их свойства.
- 18. Классификация и маркировка по составу, качеству и назначению конструкционных легированных сталей.
- 19. Классификация и маркировка по составу, качеству и назначению инструментальных легированных сталей.
- 20. Основы теории термической обработки стали. Свойства термически обработанной стали.
- 21. Образование аустенита при нагреве и его распад при охлаждении (непрерывном и при изотермических выдержках),
- 22. Диаграммы распада переохлажденного аустенита и его типы (перлитный, бейнитный, мартенситный).
- 23. Практика термической обработки стали. Нагревающие и охлаждающие среды. Закаливаемость и прокаливаемость стали.
- 24. Виды термической обработки стали, и их влияние на структуру и свойства стали (нормализация).

- 25. Виды термической обработки стали, и их влияние на структуру и свойства стали (отжиг и его виды).
- 25. Виды термической обработки стали, и их влияние на структуру и свойства стали (закалка, способы закалки стали, обработка холодом).
- 27 Виды термической обработки стали, и их влияние на структуру и свойства стали (отпуск и его виды).
- 28. Поверхностное упрочнение стальных изделий. Структура стали после химико термической обработки.
- 29. Химико-термическая обработка стали, ее разновидности и цели (цементация).
- 30. Химико-термическая обработка стали, ее разновидности и цели (азотирование).
- 31. Химико-термическая обработка стали, ее разновидности и цели (цианирование и нитроцементация).
- 32. Химико-термическая обработка стали, ее разновидности и цели (диффузионная металлизация).
- 33. Медь и ее сплавы. Классификация по различным признакам, маркировка (латуни и бронзы), область применения.
- 34. Алюминий и его сплавы. Деформируемые алюминиевые сплавы. Классификация по различным признакам, маркировка, область применения.
- 35. Алюминий и его сплавы. Литейные алюминиевые сплавы. Классификация по различным признакам, маркировка, область применения.
- 36. Магний и его сплавы. Классификация по различным признакам, маркировка, область применения.
- 37. Титан и его сплавы. Классификация по различным признакам, маркировка, область применения.
- 38. Неметаллические материалы. Классификация, строение, свойства, область применения.
- 39. Неметаллические материалы. Аморфные и кристаллические полимеры. Пластмассы. Состав и область применения.
- 40. Неметаллические материалы. Термопластичные и термореактивные пластмассы. Наполненные пластмассы. Пенопласты. Состав и область применения.

- 41. Неметаллические материалы. Особенности строения и свойства каучуков. Резина, ее состав, свойства и применение.
- 42. Порошковые и композиционные материалы: общие сведения о порошковых и композиционных материалах, их получение.
- 43.Основы металлургического производства. Современные способы получения металлов.
- 44. Производство чугуна (исходные материалы, доменная плавка и ее продукты).
- 45. Производство стали (способы выплавки стали в различных печах).
- 46. Производство цветных металлов.
- 47. Литейное производство. Свойства и классификация литейных сплавов.
- 48. Общие сведения о принципах и способах получения отливок. Классификация способов литья.
- 49. Литейные формы и материалы для них. Сборка, заливка литейных форм. Литье в песчано-глинистые формы.
- 50. Краткая характеристика о технологии специальных способов литья. Литье в металлические формы (кокили).
- 51. Специальные способы литья (преимущества и недостатки). Литье по выплавляемым моделям. Литье в оболочковые формы.
- 52. Специальные способы литья (преимущества и недостатки). Литье под давлением. Центробежное литье.
- 53. Сущность пластической деформации и факторы, влияющие на пластичность металла. Понятие о наклепе, возврате, рекристаллизации.
- 54. Получение машиностроительных профилей. Прокатка. Волочение. Прессование.
- 55. Горячая объемная штамповка. Открытые и закрытые штампы.
- 56. Листовая штамповка. Основные группы операций листовой штамповки.
- 57. Свободная ковка. Операции свободной ковки.
- 58. Сварочное производство. Применение сварки в заготовительном и ремонтном производствах.
- 59. Свариваемость металлов. Контроль качества сварных соединений.
- 60. Классификация сварки и сварных соединений, оборудование и применяемые

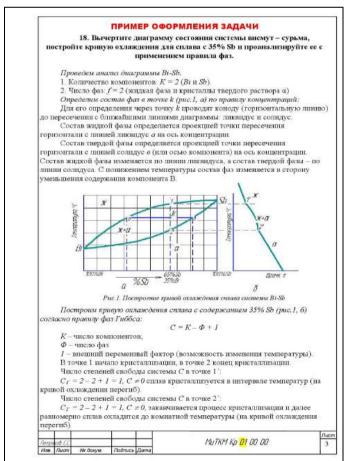
материалы (краткая характеристика).

- 61. Разновидности сварных швов. Основные требования к сварочному шву.
- 62. Электродуговая сварка. Оборудование при электродуговой сварке. Характеристика сварной дуги.
- 63. Материалы сварочной проволоки, электродов. Условное обозначение электродов.
- 64. Автоматическая и полуавтоматическая сварка под слоем флюса. Электрошлаковая сварка.
- 65. Сварка в среде защитных газов.
- 66. Электроконтактная сварка и ее разновидности.
- 67. Газовая сварка и резка металлов. Материалы, оборудование и приспособления, применяемые при газовой сварке.
- 68. Особенности сварки различных материалов и сплавов (сталей и чугунов, цветных металлов и сплавов).
- 69. Сущность процесса и применяемые материалы для пайки. 70.Способы пайки. Контроль качества паяных соединений.
- 71. Способы обработки металлов резанием. Обрабатываемая и обработанная поверхности и плоскости резания.
- 72. Процесс стружкообразования. Виды стружек, усадка стружки, наростообразование,

наклеп обработанной поверхности.


- 73. Точность обработки и качество обработанной поверхности. Шероховатость поверхности.
- 74. Скорость резания и стойкость инструмента при точении. Зависимость скорости резания от подачи, глубины резания и стойкости инструмента.
- 75. Методика (последовательность) назначения рационального режима резания при точении. Проверка выбранного режима резания.
- 76. Сила резания и ее составляющие при точении.
- 77. Мощность, крутящий момент резания при точении.
- 78. Анализ формулы скорости резания. Влияние различных факторов на скорость резания.

- 79. Конструкции и геометрические параметры металлорежущего инструмента.
- 80. Инструменты и приспособления для токарных станков. Геометрия токарного резца (α , β , γ , δ , α_I , λ , ε , φ , φ_I)
- 81. Материалы для изготовления режущих инструментов. Требования к инструментальным материалам, понятие стойкости.
- 81. Металлокерамические и безвольфрамовые твердые сплавы, металлокерамические материалы.
- 83. Материалы и технологии изготовления сборных инструментов.
- 84. Классификация и нумерация металлорежущих станков.
- 85. Основные механизмы, применяемые в металлорежущих станках.
- 86. Механизмы приводов поступательного движения.
- 87. Станки токарной группы. Разновидности, их назначение.
- 88. Узлы токарно-винторезного станка. Работы, выполняемые на станке.
- 89. Устройство вертикально-сверлильного станка. Механизмы главного движения и движения подачи.
- 90. Станки фрезерной группы. Виды работ выполняемых на фрезерных станках.
- 91. Типы строгальных станков: поперечно- и продольно-строгальные станки. Работы, выполняемые на строгальных станках, и применяемые приспособления.
- 92. Долбежные станки. Работы, выполняемые на долбежных станках, и применяемые приспособления.


ПРИЛОЖЕНИЯ

Приложение 1

Пример оформления контрольной работы

СОДЕРЖАНИЕ Вопрое 22 Вопрое 28 Вопрое 53 Вопрое 91 Вопрое 105 Вопрое 168 Список литературы		ПРИМЕР ОФОРМЛЕНИЯ СОДЕРЖАНИЯ
Вопрос 22 Вопрос 28 Вопрос 53 Вопрос 91 Вопрос 105 Вопрос 168 Список литературы		
Вопрос 28 Вопрос 53 Вопрос 91 Вопрос 105 Вопрос 168 Список литературы		содержание
Вопрос 53 Вопрос 91 Вопрос 105 Вопрос 168 Стисок литературы	Вопрос 22	
Вопрое 91 Вопрое 105 Вопрое 168 Список литературы	Вопрос 28	7.3.7.11 (11.11.11.11.11.11.11.11.11.11.11.11.11.
Вопрое 91 Вопрое 105 Вопрое 168 Список литературы	Вопрос 53	
Вопрос 168	Вопрос 91	
Список литературы	Вопрос 105	
Список литературы	Вопрос 168	
номер варианта		
		номер варианта
		1
Acr March Olds ame Matrix Kp of 00 00	Acc W dow	Mutkm Kp 01 00 00
Auco M'dasyn Rath Same	nat <mark>Albanat VIX</mark> etad	рк Лидт ўзта МЫТКІМ КІР <mark>ОТ</mark> 00 00 Пыст Пыст Пыст Пыст Пыст Пыст Пыст Пыст

Построение кривой охлаждения сплава

Для построения кривой охлаждения применяют правило фаз.

Правило фаз (Гиббса) устанавливает количественную зависимость между числом степеней свободы, числом компонентов и фаз условия равновесия. Правило фаз выражается уравнением: $C = K - \Phi + n,$

где C – число степеней свободы системы – это число внутренних и внешних факторов (температура, давление, концентрация), которые можно изменять без изменения количества фаз в системе;

K – число компонентов;

 Φ – число фаз;

n — внешние переменные факторы (t, p). Если давление p = const при превращении в сплавах, то: $C = K - \Phi + 1$

где 1 – внешний переменный фактор (возможность изменения температуры).

Если C=0, то идет превращение при постоянной температуре (на кривой охлаждения наблюдается площадка).

Если $C \neq 0$, то охлаждение пропорционально изменяющемуся времени (наблюдается изменение на кривой охлаждения - перегиб)

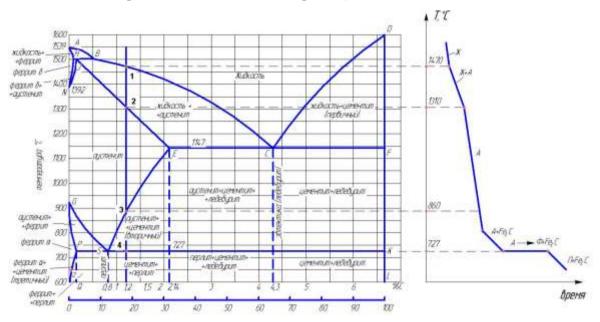


Рис.1. Построение кривой охлаждения сплава на диаграмме состояния системы $Fe - Fe_3C$ Построим кривую охлаждения сплава с содержанием 1,2% углерода (рис.1): В точке 1 начало кристаллизации, в точке 2 конец кристаллизации.

Число степеней своболы системы С в точке 1:

 $C_{I'} = 2 - 2 + 1 = 1$, $C \neq 0$ сплав кристаллизуется в интервале температур (на кривой охлаждения перегиб).

Число степеней свободы системы C в точке 2:

 $C_{2} = 2 - 2 + 1 = 1$, $C \neq 0$, заканчивается процесс кристаллизации и далее равномерно сплав охладится до комнатной температуры (на кривой охлаждения перегиб).

Число степеней свободы системы C в точке 3:

 $C_{I^{\circ}} = 2 - 2 + 1 = 1$, $C \neq 0$ сплав кристаллизуется в интервале температур (на кривой охлаждения перегиб).

Число степеней свободы системы C в точке 4:

 $C_{I^{\wedge}}=2-3+1=1,\ C=0$ сплав кристаллизуется в интервале температур (на кривой площадка).

УСЛОВНОЕ ОБОЗНАЧЕНИЕ ЭЛЕКТРОДОВ

Сварочные электроды для ручной дуговой сварки можно классифицировать:

- 1. по назначению электродов для сварки углеродистых сталей, легированных сталей, чугуна, цветных металлов, для сварки разнородных сталей, наплавочных работ.
- 2. по типу покрытия электродов целлюлозные, рутиловые, основные, фтористо-кальцевые, рудно-кислые и другие.
- 3. по механическим свойствам металла шва электроды, согласно ГОСТ 9467—75.

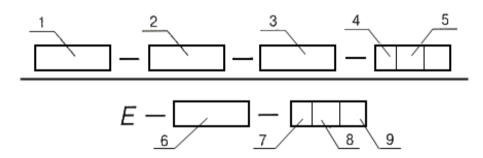


Рис.3 Схема структуры условного обозначения электродов: 1 - тип; 2 - марка; 3 - диаметр, мм; 4 - обозначение назначения электродов; 5 - обозначение толщины покрытия; 6 - группа индексов; указывающих характеристики наплавленного металла и металла шва по ГОСТ 9467-75, ГОСТ 10051-75 или ГОСТ 10052-75; 7 - обозначение вида покрытия; 8 - обозначение допустимых пространственных положений сварки или наплавки; 9 - обозначение рода применяемого при сварке или наплавке тока, полярности постоянного тока и номинального напряжения холостого хода источника питания сварочной дуги переменного тока частотой 50 Ги.

Рис. 4. Пример условного обозначения электродов

ТЕХНОЛОГИЯ ОБРАБОТКИ МЕТАЛЛОВ РЕЗАНИЕМ

При решении задач по обработке металлов резанием искомые величины рекомендуется определять по таблицам и по формулам.

Паспортные данные станков

Токарно-винторезные станки

Модели: 1А62, 1А62Б, 1А62Г

частоты вращения шпинделя (мин⁻¹): 11,5; 14,5; 19; 24; 30; 37,5; 46; 58; 76; 96; 120; 150; 184; 2304 305; 380; 480; 600; 610; 770; 960; 1200;

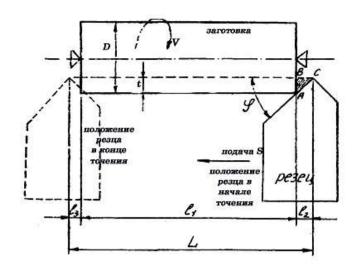
мощность электродвигателя главного движения $N_9 = 7$ кВт, КПД станка $\eta = 0.75$.

Молель 1В62Г

частоты вращения шпинделя (мин⁻¹): 10; 12,5; 16, 20; 25; 31,5; 40; 50; 63; 80; 100; 125; 160; 200; 250; 315; 400; 500; 630; 800; 1000; 1250;

мощность электродвигателя главного движения $N_9 = 7.5$ кВт, КПД станка $\eta = 0.786$.

Модель 1К62


частоты вращения шпинделя (мин⁻¹): 12,5; 16; 20; 25; 31,5; 40; 50; 63; 80; 100; 1254 160; 200; 250; 315; 400; 500; 630; 800; 1000; 1250; 1600; 2000;

мощность электродвигателя главного движения N_3 =10 кВт, КПД станка η = 0,8.

Модель 16К20

частоты вращения шпинделя (мин⁻¹): 12,5; 16; 20; 25; 31,5; 40; 50; 63; 80; 100; 125; 160; 200; 250; 315; 400; 500; 630; 800; 1000; 1250; 1600;

мощность электродвигателя главного движения N_3 =10 кВт, КПД станка η =0,75.

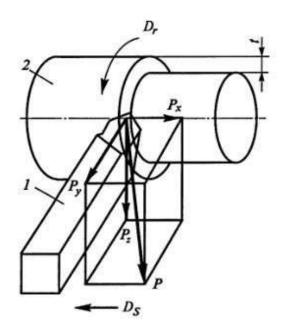


Рис. 5. Схема точения заготовки в центрах

Из
$$\triangle ABC$$
: $l_2 = BC = AB/tg \varphi = t//tg \varphi$, $l_3 = 5$ мм, $L = l_1 + l_2 + l_3$

Рис. 6. Силы действующие на резец: 1 – резец; 2 – заготовка; Рх, Ру и Рz – составляющие силы резания; Dr – направление главного движения резания; Ds – направление движения подачи; t - глубина резания

Сила резания (вертикальная составляющая) при точении:

$$P_Z=10 C_p \cdot t^{Xp} \cdot S^{Yp}$$
, H,

где t – глубина резания, мм;

S — подача, мм/об.

Значения величин C_p , x^P , y^P выбирают из табл. 2.

Осевое усилие $P_X=P_Z/4$.

Радиальная сила $P_Y = 2/5 \cdot P_Z$.

Скорость резания: при точении $V = \frac{C_v}{t^{Xv} \cdot S^{Yv} \cdot T^m}$,м/мин,

где t — глубина резания, мм;

S — подача, мм/об;

T – стойкость резца, мин., выбирают согласно табл. 3.

Значение C_{ν} выбирают согласно табл. 1.

Значения X_{ν} , Y_{ν} выбирают согласно табл. 4.

Значение m выбирают согласно табл. 5.

Частота вращения заготовки (при точения) определяют после расчета скоро-

$$n = \frac{1000 \cdot V}{\pi \cdot D}$$
, мин⁻¹,

где V – скорость резания, м/мин;

D – диаметр заготовки (сверла), мм.

Основное машинное время:

$$T_0 = \frac{L}{n \cdot S} i$$
, MUH,

где i — число проходов;

L – длина хода режущего инструмента;

$$L=l_1+l_2+l_3$$
,

где l_I — длина обрабатываемой поверхности, по которой осуществляется перемещение инструмента в направлении подачи, мм (задается условием задачи);

 l_2 – длина врезания инструмента, мм.

При точении

$$l_{2=}\frac{t}{tg\,\varphi}$$
,

где t – глубина резания, мм;

 φ — главный угол в плане резца.

 l_3 – длина выхода инструмента (перебег), мм, l_3 = 2—5 мм.

Эффективная мощность (мощность в зоне резания): $Ne = \frac{P_z \cdot V}{60 \cdot 120}$, кВт,

где P_z — сила резания, кгс;

V – скорость резания, м/мин.

Мощность, отдаваемая электродвигателем станка коробке скоростей станка:

$$N'e = \frac{N_e}{\eta_{cm}} = \frac{P_z \cdot V}{60 \cdot 120 \cdot \eta_{cm}}, \text{KBT},$$

где η_{cm} – КПД станка.

Мощность, потребляемая электродвигателем станка из сети:

$$N''e = \frac{N_e}{\eta_{cm}} = \frac{P_z \cdot V}{60 \cdot 120 \cdot \eta_{cm} \cdot \eta_{ad}}$$
, KBT,

где $\eta_{\text{3d}} = 0.97 - \text{КПД}$ электродвигателя.

Таблица 1

Обрабатываемый материал	C_{v}
Сталь	42
Чугун	24

Таблица 2

Обрабатываемый	$\sigma_{B_{\bullet}}$ МПа		НВ		C_p	Хp	Yp
материал	OB, WITH		11D		C_p		
	350			144			
	450				155		
Сталь	550			165		1	0,78
	650				180	1	0,76
	750			193			
	850				205		
		155		100			
Чугун			170		107	1	0.72
		190		115		1	0,73
			210		120		

Таблица 3

	Сечение державки резца, мм						
Материал резца	16×25	20×30	25×40	40×60			
	Стойкость резца T , мин						
Быстрорежущая сталь	60	60	90	120			
Металлокерамический твер-							
дый сплав	90	90	120	150			

Таблица 4

Обрабатываемый материал	Xv	Yv
Сталь	0,18	0,27
Чугун	0,15	0,30

Таблица 5

Обрабатыва-	Типы	Условия	Значение т			
емый матери-		обработки	быстрорежущая	сплав	сплав	
ал	резцов	оораоотки	сталь	ТК	ВК	
Сталь, сталь-		с охлаждением	0,125	0,125	0,150	
ное литье, ков- кий чугун	проходные	без охлаждения	0,100	0,125	0,150	
Серый чугун	проходные	без охлаждения	0,100	0,125	0,200	

СОДЕРЖАНИЕ

Bı	зедение
I	МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ИЗУЧЕНИЮ РАЗДЕЛОВ
Дl	ИСЦИПЛИНЫ «МАТЕРИАЛОВЕДЕНИЕ И ТЕХНОЛОГИЯ
К	ОНСТРУКЦИОННЫХ МАТЕРИАЛОВ»
O	сновные темы раздела «Материаловедение»5
	1. Механические, технологические и физико-химические свойства материалов5
	2. Формирование структуры металлов при кристаллизации. Макро-
	и микродефекты5
	3. Теория сплавов. Диаграммы двухкомпонентных систем (сплавов)6
	4. Оборудование и методика структурных исследований металлов и сплавов7
	5. Углеродистые стали и чугуны
	6. Легированные конструкционные и инструментальные стали
	7. Фазовые превращения в сплавах железо-углерод при нагреве и охлаждении9
	8. Технология термической обработки
	9. Поверхностное упрочнение стальных изделий
	10. Цветные металлы и сплавы
	11. Неметаллические и порошковые композиционные материалы
O	сновные темы раздела «Горячая обработка металлов»12
	1. Теоретические и технологические основы производства материалов.
	Металлургия стали и чугуна
	2. Методы формообразования заготовок. Производство заготовок способами литья12
	3. Производство заготовок пластическим деформированием13
	4. Производство неразъемных соединений
O	сновные темы раздела «Качество обработанной поверхности. Поведение матери-
ал	ов в эксплуатации»15
	1. Обработка металлов резанием. Качество обработанной поверхности15
	2. Конструкции и геометрические параметры режущего инструмента.
	Материалы для изготовления режущих инструментов
	3. Классификация и основные механизмы металлорелорежущих станков16
II	методические рекомендации по выполнению контрольной
P	АБОТЫ 16

Варианты задани	й к контрол	ьной р	аботе			17
Задания к контро	льной работ	re			•••••	20
Список рекоменду	емой литерат	уры дл	ія само	остоятельной и к	онтрольн	ой работы53
ш список	ВОПРОС	COB	К	ЭКЗАМЕНУ	ПО	дисциплинн
«МАТЕРИАЛОВ	ЕДЕНИЕ	И	TEX	кнология	КОНС	ТРУКЦИОННЫХ
МАТЕРИАЛОВ»						54
Приложение 1						60
Приложение 2						61
Приложение 3						63
Приложение 4						64

Составители:

Агафонова Екатерина Васильевна Возженникова Татьяна Викторовна

МАТЕРИАЛОВЕДЕНИЕ И ТЕХНОЛОГИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ

Методические указания

для самостоятельной работы и контрольной работы (для направления подготовки 44.003.04 Профессиональное обучение)

Компьютерная верстка	Е.В. Агафонов
Подписано в печать	2023 г.
Формат 84*108/32. Объем	<mark>3,0</mark> учизд. Л
1	<u> </u>

Отпечатано в мини-типографии Инженерного института 630039, г. Новосибирск, ул. Никитина, 147, офис 225